Dataset for: Beta band oscillatory deficits during working memory encoding in adolescents with attention deficit hyperactive disorder

2019-08-01T14:01:41Z (GMT) by Nowell Zammit Richard Muscat
Attention-Deficit Hyperactivity Disorder (ADHD) is a neurobehavioural disorder, characterized by symptoms of inattention and/or hyperactivity/impulsivity, in addition to various cognitive deficits, including working memory impairments. This pathology arises from a complex constellation of genetic, structural and neurotransmission abnormalities, which give rise to the aberrant electrophysiological patterns evident in patients with ADHD. Among such, findings have consistently provided support in favour of weaker power across the beta frequency range. Evidence has also emerged that beta rhythmic decrements are linked to working memory encoding. The catecholaminergic modulation of both working memory and beta oscillations may suggest that the link between the two might be rooted at the neurotransmission level. Studies have consistently shown that ADHD involves significant catecholaminergic dysregulation, which is also supported by other clinical studies that demonstrate stimulant-induced amelioration of ADHD symptomology. In the current study, we explore the possible ways that might relate ADHD, working memory, beta rhythms and catecholaminergic signalling altogether by investigating the integrity of encoding-relevant electroencephalographic beta rhythms in medication-naïve and stimulant-medicated adolescent patients. The aberrant parietal and frontal encoding-related beta rhythm revealed in the ADHD patients together with a WM deficit as observed herein was reversed by MPH in the latter case but not with regards to the beta rhythm. This finding per se raises the issue of the role played by beta rhythms in the WM deficits associated with ADHD.