
Ecological Archives A020-058-A1  

Sergey S. Rabotyagov, Todd Campbell, Manoj Jha, Philip W. Gassman, Jeffrey 
Arnold, Lyubov Kurkalova, Silvia Secchi, Hongli Feng, and Catherine L. Kling. 
2010. Least cost control of agricultural nutrient contributions to the Gulf of 
Mexico hypoxic zone. Ecological Applications 20:1542-1555. 

Appendix A. Algorithm description and additional results.  

The language and logic of evolutionary algorithms 
 

Beginning in 1950’s and 1960’s computer scientists came to a realization that the theory 

of biological evolution can be used as an optimization tool for engineering problems. Since the 

field of evolutionary computation owes its origins to observations of biological evolution, the 

terminology used has its analogs in biology, although, typically, the entities used to describe an 

optimization problem are much simpler than the real biological entities bearing the same name. 

A genome (or a chromosome) refers to a complete collection of genes and fully describes an 

individual (a candidate solution in an optimization problem). A set of possible values that any 

gene can take is referred to as an allele set, or alphabet. Often, a genome representing a 

candidate solution is a one-dimensional array, or vector. A gene then is an element of this array 

and encodes a particular element of a candidate solution. A value of a gene comes from its allele 

set, also a vector. Analogous to haploid organisms in real biology, offspring is created from two 

parent individuals.  During sexual reproduction, recombination (crossover) occurs: the 

offspring’s genome consists of portions of each of the two parents’ genomes. As in biological 

evolution, offspring are subject to mutation: a random substitution of a gene’s value with a value 

from its allele set.  



In this study, the following correspondence between the terminology of evolutionary 

algorithms and entities related to nonpoint source pollution is made. Table A1 provides the 

necessary terms: 

 

TABLE A1. Terminology of evolutionary algorithms in relation to watershed optimization 
 

Evolutionary computation term Its interpretation in a nonpoint 
source pollution setting 

Allele set A set of mutually exclusive land use 
options and conservation practices 

Individual (genome) A distinct allocation of conservation 
practices and land use options in the 
watershed 

Gene Spatial unit of analysis (HRU) 

 

 

In this application of evolutionary algorithms to spatial optimization, a genome is a 

vector of length F, where F is the number of spatial decision-making units. Each element of the 

vector (gene) is encoded with a value from the allele set A, and denotes a particular land use 

option.  

As in biological evolution, individuals at every generation form populations, and are 

characterized by their fitness—a score which measures how well each individual is solving the 

optimization problem at hand (for example, a value of an objective function). Individuals 

possessing higher fitness scores are more likely to be selected for reproduction and therefore are 

more likely to pass along the characteristics associated with the candidate solutions they 

represent.  

While there are many variations of evolutionary algorithms, most that can be called 

“genetic algorithms” have the following elements in common: populations of individual 



solutions, selection for reproduction according to fitness levels, crossover to produce new 

solutions (offspring), and random mutation of new offspring.  

Given that in order to characterize the tradeoffs outlined above, a multiobjective 

optimization problem needs to be addressed, we turn to a class of evolutionary algorithms 

designed to solve multiobjective problems. Recent years have seen emergence of several 

multiobjective evolutionary algorithms. We use an algorithm called Strength Pareto Evolutionary 

Algorithm 2 (SPEA2), developed by Zitzler and Thiele (Zitzler et al.  2002).  

The search process starts with a population of candidate solutions from which a new 

population is created by the process of selection, crossover, and mutation. The fitness score of 

each individual in the population is a function of how many other individuals in the population it 

dominates (in the sense of Pareto) and by how many individuals it is dominated by. The 

algorithm provides an approximate solution to the main multiobjective minimization problem by 

preserving Pareto-nondominated individuals, by eliminating Pareto-dominated solutions, and by 

iteratively creating new candidate solutions and assessing how well they perform on the multiple 

objectives. Furthermore, the algorithm takes into account the degree of “crowding” around an 

individual in order to preserve the diversity in the population and to explore a greater region of 

the objective space.  

Fitness assignment 

An individual i is assigned a strength value ( )S i  which equals to the number of solutions it 

dominates: 

 ( ) { | }t tS = ∈ ∪ ∧i j j P P i jf , (A.1) 



where tP is the original population at generation t ,  tP is the temporary population created, 

⋅ denotes the cardinality of a set, and f  corresponds to the Pareto dominance relation. On the 

basis of this definition of strength values, the raw fitness for individual i is calculated:  
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Thus, the raw fitness of an individual is determined by the strength of the dominators 

(individuals that dominate i ). Then, the raw fitness value of ( ) 0R =i  corresponds to a 

nondominated individual, while a high raw fitness value corresponds to an individual that is 

dominated by many other individuals (which in turn dominate other individuals). In light of this 

interpretation, fitness minimization used in the formulation of the algorithm makes intuitive 

sense. Figure A1 demonstrates the fitness assignment process and highlights the fact that 

individuals that are located in the “crowded” areas of the objective space get a higher raw fitness 

value, and therefore are less likely to be selected into a future generation. For instance, point F 

dominates points B, C, and A, and therefore gets a strength value of 3. Since point F is 

nondominated, its raw fitness is zero. Point D, on the other hand, dominates only A, and thus 

gets the strength value of one, but is dominated by point G, which itself dominates 3 points. 

Thus, point D gets the raw fitness value of 3. Point A is the ‘worst’ point in the objective space, 

as it is associated with the highest cost and pollution levels. It itself does not dominate any other 

points, but is dominated by points F, G (with a strength value of 3), H (with a strength value of 

2), D (with a strength value of 1), and E (with a strength value of 1). Therefore, the raw fitness 

value for point A is 3+3+2+1+1=10. Recalling that in this algorithm, individuals with the lower 

fitness scores are considered ‘more fit’, it is clear that individual A is far less likely to survive 

into the next generation than, for example, point F.  



 Such assignment of raw fitness scores also takes into account the relative ‘isolatedness’ 

of candidate solutions in the objective space. Conceptually, one would like the resulting Pareto-

optimal frontier to span a large portion of the objective space. Therefore, candidate solutions on 

the interior of the frontier are somewhat less preferred than those close to the edges. In the 

figure, for example, while both points B and C are dominated, point C is dominated by both 

points F and G by virtue of its ‘interior’ location in the objective space; whereas point B is 

dominated only by point F and not by point G: its pollution level is lower than that of G. As a 

result, point B has a raw fitness score of 3 as opposed to the score of 6 for C, and its ‘genetic 

makeup’ is therefore less likely to be eliminated in the subsequent generations.  

 

 

FIG. A1. Raw fitness assignment in SPEA2. 
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Finally, while the raw fitness score assignment outlined above incorporates some 

information on the location of the solutions in the solution space, additional density information 

is also incorporated into the calculation of a fitness score. Density estimation technique is used to 

further differentiate between individuals that are located in the “crowded” areas of the objective 

space (less preferred) from those located in the relatively sparse areas of the objective space 

(more preferred). The density estimation technique used in SPEA2 is an adaptation of the k -th 

nearest neighbor method, where the density at any point is a decreasing function of the distance 

to the k -th nearest data point. For each individual i , we calculate the distances (in objective 

space) to all the individuals in the population and the temporary population, and store them in a 

list. After sorting the list in an increasing order, the k -th element yields the distance, denoted as 

kσ i .  k  is chosen to equal to the square root of the sum of the initial population size and the size 

of the temporary population ( 40 12 7+ ≈ ). An additional measure of distance was incorporated 

into the algorithm in order to preserve diversity in the objective space. In each generation, the 

distance from a given individual to the center of the cube defined by the endpoints of the frontier 

was established. The purpose of this calculation is to further reward individuals who are located 

closer to the edges of the frontier, and thus prevent loss of diversity.   

 This distance is denoted as cσ i . The density is computed as:  

 1( )
0.25 2k cD

σ σ
=

+ +i i

i , (A.3) 

where 2 is added to the denominator to ensure that the value of the density is greater than zero 

and less than one. Given the raw fitness score and the estimated density, the fitness of an 

individual i is calculated as:  

 ( ) ( ) ( )F R D= +i i i . (A.4) 



For the HRUs which were observed to have the relevant conservation practice in the 

baseline, the allele set was constrained. Reduced fertilizer (RF) in the table above refers to a 20 

percent reduction in nitrogen fertilizer application. The allele set is constructed to take into 

account the fact that many of the practices considered are not mutually exclusive and can be 

implemented jointly on any given field. 

 

TABLE A2. Field-level Conservation Options (Unconstrained Allele Set). 

Option number Allele description 

1 Conventional Till (CT) 
2 Ridge Till (RT) 
3 Mulch Till (MT) 
4 No Till (NT) 
5 CT+Contour 
6 RT+Contour 
7 MT+Contour 
8 NT+Contour 
9 CT+Grassed Waterway 

10 RT+Grassed Waterway 
11 MT+Grassed Waterway 
12 NT+Grassed Waterway 
13 CT+Terraced 
14 RT+ Terraced 
15 MT+Terraced 
16 NT+Terraced 
17 CT+RF 
18 RT+RF 
19 MT+RF 
20 NT+RF 
21 CT+Contour+RF 
22 RT+Contour+RF 
23 MT+Contour+RF 
24 NT+Contour+RF 
25 CT+Grassed Waterway+RF 
26 RT+Grassed Waterway+RF 
27 MT+Grassed Waterway+RF 
28 NT+Grassed Waterway+RF 
29 CT+Terraced+RF 



30 RT+Terraced+RF 
31 MT+Terraced+RF 
32 NT+Terraced+RF 
33 Land retirement 

 
 

 

FIG. A2. Histogram of subbasin nitrate loadings, by share of baseline loadings. 
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FIG. A3. Histogram of subbasin phosphorus loadings, by share of baseline loadings. 
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