
Appendix A

Data Description and RTM Application Specifics

The development of the real-time monitoring system described in this research was made under

the auspices of the organization Save the Elephants (STE) based in Kenya. Collection of elephant

movement data using Global Positioning System (GPS) tracking collars by STE capable of teleme-

tering data in real-time began in May 2002 with the deployment of the first satellite-based tracking

collars. The real-time monitoring (RTM) system was developed, beginning in 2004 over several

years and Geofencing was the first algorithm implemented in 2007. However, our discussion below

and within the manuscript is limited to our second generation system that we established in June,

2012 with the activation of the four RTM algorithms on an Amazon Elastic Compute Cloud (EC2)

server and we therefore consider only those datasets being actively received by the RTM system as

of June, 2012 and onwards.

1 Collar Description & Type

Movement data is collected from elephants by affixing a tracking unit using a length of belting

around the neck of the animal (mean circumference: 260 cm (female), 330 cm (male)) following

chemical immobilization by a veterinary doctor. The tracking unit is designed to rest at the crest of

the shoulders on the animal’s neck while a counter-weight at the opposite side of the belting loop

ensures the unit will remain facing skyward.

A typical tracking unit contains a GPS receiver, non-volatile memory for on-board storage of

1

Table A1. Collar Model Summary.

Manufacturer Model Transmission Method Battery
Capacity
(Amp/Hr)

Units Deployed

AWT A \ AM SMS 91 10

AWT AG TCP/IP 143 15

AWT MT100 TCP/IP 130 62

ST GL100 TCP/IP 80 5

data, a Very High Frequency (VHF) radio beacon, and either a Global System for Mobile (GSM) or

Satellite communications modem for telemetry of recorded positions. Certain models also house a

temperature sensor for recording ambient temperatures.

Tracking units for real-time monitoring were purchased from two commercial collar manufac-

turers: African Wildlife Tracking (AWT) based in Pretoria, South Africa (http://www.awt.co.za/)

and Savannah Tracking (ST) based in Nairobi, Kenya (http://www.savannahtracking.com/). A

summary of collar models is presented in Table A1. Using either the GSM or Satellite network

infrastructures, data from a unit is telemetered using either the Short Message Service (SMS) or

via a data connection using Transmission Control Protocol/Internet Protocol (TCP/IP). The SMS

format limits message content to 160 characters, therefore recent collar models have adopted the

use of data connections in preference to SMS since transmission is faster, cheaper and there is not

a limit to the amount of data that can be sent.

2 Temporal Sampling Regime

Data were most frequently sampled at 1-hour intervals (Table A2). Lower sampling frequencies

were sometimes selected for operational reasons, such as where re-collaring operations would be

difficult and the lifetime of the unit was selected in preference over more up-to-date information

on the animal’s whereabouts (although Table A2 suggests that selection of a less frequent sampling

interval does not necessarily result in a longer-duration dataset). There are many variables involved

2

Table A2. A summary of tracking datasets. Two collars were re-deployed and used to collect more
than one dataset and therefore a total of 92 collar units have led to 94 datasets. Data collection is
ongoing and 78 units are still currently active.

Sampling
Frequency

(Hours)

Dataset
Count

Median Duration
(Days)

Max Duration
(Days)

1 59 562.41 2409.88

4 31 489.06 2532.96

8 3 1092.35 1175.83

24 1 1079.49 1079.49

that confound establishment of a relationship between sampling frequency and dataset duration. In

several cases for example, elephants were shot and killed by poachers for their ivory tusks, thus

truncating a potentially longer dataset. Several collar units were also simply dropped by animals,

or suffered damage, causing a premature termination in the collection of a tracking dataset. Field

operations and conditions can also create delays between the time a collar is manufactured as

compared to when it is deployed onto a given animal and therefore the battery is not always at

full capacity on deployment. The transmission method - GSM or Satellite - affects transmission

power consumption but is severely dependent on the units’s ability to obtain a decent connection

and the number of attempts made for each transmission. For example, units on the fringes of GSM

network coverage would expend more energy transmitting than a unit in close proximity to a GSM

tower, but there is very little way to model or predict this beforehand. Weather conditions such

as humidity and temperature can also affect the transmission capability of a collar. Vegetative

canopy and terrain are also major factors in a collar’s ability to transmit data as well as the GPS

constellation configuration. Further study is needed to establish the potential relationship between

unit battery capacity, transmission method, longevity and dataset quality for different tracking

collar models.

3

EE
E

E

EEE

E

E

E

E

E

EE

E
E

E
E

E

E

E

E
E
E

EE

E

EE

E

E

E
E

E

E

E

E

E
E

E

E

E

EE

E

EEE
E

E

E

E

E

E E

EE

E

Copyright:© 2013 Esri

Kenya

0 40 8020 Kilometers

E
EE
E

EEEE

E
E
E

E

EE
E
EE
E

E

E
E E

EE

E

EEEE
E

EE

E EE

Copyright:© 2013 Esri

South Africa
0 40 8020 Kilometers

Fig. A1. Collar deployment locations in Kenya and South Africa for collars used in the RTM
program. Green polygons demarcate protected areas (source: World Database on Protected Areas
(WDPA, 2013)) and elevation hillshade shows terrain (Source: Esri, 2013).

3 Deployment Locations

Collars were deployed onto elephants in both Kenya and South Africa (Figure A1). An approx-

imately even distribution of collars onto males and females was made. Selection of individuals

was a mix between choosing individuals known to researchers in the study areas, and randomly

selecting animals for collar deployment. Large bulls and females with big tusks have become in-

creasingly favoured for real-time monitoring and selection when deploying collars. Other choices

include individuals known to crop-raid frequently, or who are believed to have interesting and far

ranging movement.

4 Data Telemetry

Tracking data from AWT collars is telemetered using one of three methods. ’A’ and ’AM’ units

transmit via SMS to a server located in South Africa while AWT ’AG’ units telemeter data using

4

a TCP/IP data connection. Data from all three unit types are stored in a database operated by

AWT and made available for download using a Hyper Text Transport Protocol (HTTP) Application

Programing Interface (API). Data from AWT Satellite units are telemetered using a data connection

via the Inmarsat satellite constellation to a data download center located in Australia. These data

are made available via a Simple Object Access Protocol (SOAP) API called the ’Sky-Q’ API.

We developed customized software called ’AnimalLink’ using the Microsoft C# programming

language and .Net 4.0 Class library and the Environmental Systems Research Institute (Esri) En-

gine Runtime version 10.1 software components to gather data from multiple tracking unit sources

and store them in a single PostgreSQL v8.4 ’AnimalTracking’ database. AnimalLink runs on an

Amazon Web Services Windows Server 2008 instance hosted in the Amazon EC2 environment

(Figure 1 of manuscript). AnimalLink uses both the AWT HTTP API and AWT Sky-Q API for

collection of AWT tracking unit data. At present, both AWT APIs are queried every three minutes

for the most recent collar locations. Data from Savannah Tracking GL-100 units are telemetered

directly to our server using a TCP/IP data connection which is continuously monitored by Ani-

malLink.

5 Data Storage

Datasets within the AnimalTracking database are identified by a ’chronofile’ number that defines a

single collar identification value as being attached to a unique animal for a given period of time.

An animal, defined uniquely with a name, may have several chronofiles corresponding to multiple

collar deployments on the same animal but never temporally overlapping. GPS records are stored

in a single table ’archive_loc’ in their native latitude/longitude format with reference to the WGS84

spheroid. Time information is stored in Universal Coordinated Time (UTC). A database join with

a ’TrackingMaster’ table recovers information about the dataset such as the collar ID number,

animal name, animal sex, etc. A ’TrackingUser’ table stores details about users of the tracking

system including their contact information and chronofile access list.

5

6 Data Analysis

Customized MovementMonitor software was developed using the Microsoft C# programming lan-

guage and .Net 4.0 Class library and the Esri Engine Runtime version 10.1 software components

to be able to analyze new data after it is stored within the AnimalTracking database. Each of the

4 real-time monitoring algorithms is run in continuous succession for each active chronofile found

within the TrackingMaster table. Spatial data used in the Proximity and Geofencing algorithms

is stored in an Esri SDE enabled PostgreSQL 8.4 database (STESpatial). Each algorithm has a

database table (e.g., ’GeofenceMaster’) that stores the algorithm-specific parameters for a partic-

ular chronofile. In this way, the algorithms are customizable to each animal being tracked and

parameters can be varied as necessary. Below we provide details and pseudocode on each of the

four described algorithms: Proximity, Geofencing, Movement Rate and Immobility. The algorithms

only search movement data within a specified recent temporal window to ensure that any triggered

alerts are within a time frame of interest (e.g., within the last 24 hours).

6.1 Proximity

The proximity algorithm uses a set of spatial features (represented as polygons) stored within the

STESpatial database, to assess the proximity of an animal with each spatial feature of interest. A

‘ProximityMaster’ table defines the subset of spatial features that are relevant to a particular animal

and the proximity distance threshold value configurable to a particular chronofile.

Algorithm A1: Proximity algorithm pseudocode

f o r e a c h (a n im a l)
{

S e l e c t an imal ’ s L a s t P o s i t i o n
MaxSearchTime=Now−24 h o u r s
T h r e s h o l d P r o x i m i t y =500 m e t e r s
f o r e a c h (S p a t i a l F e a t u r e)
{

P r o x i m i t y = S h o r t e s t D i s t a n c e (L a s t P o s i t i o n , S p a t i a l F e a t u r e)
i f (P r o x i m i t y < T h r e s h o l d P r o x i m i t y)
{

S e n d A l e r t ()
}

}
}

6

6.2 Geofencing

The Geofence algorithm determines where an animal’s straight-line track (calculated between the

LastPosition and the PenultimatePosition) crosses a particular geofence. Geofences are a set of line

features stored in the STESpatial database. A ‘GeofenceMaster’ table defines a subset of geofences

that are relevant to a particular animal. Linear interpolation of the break-point between the start

time and end time of the animal’s track is used to estimate the time of the geofence break.

Algorithm A2: Geofence algorithm pseudocode

f o r e a c h (a n im a l)
{

S e l e c t an imal ’ s L a s t P o s i t i o n and P e n u l t i m a t e P o s i t i o n
MaxSearchTime=Now−24 h o u r s
Track = C r e a t e S t r a i g h t L i n e (L a s t P o s i t i o n , P e n u l t i m a t e P o s i t i o n)
f o r e a c h (Geofence)
{

C r o s s e s = I n t e r s e c t i o n (Geofence , Track)
i f (C r o s s e s == t r u e)
{

S e n d A l e r t ()
}

}
}

6.3 Movement Rate

The movement rate algorithm calculates the temporal sum of the distance traveled by an animal

within a set temporal window and compares the value with a distribution of known ‘normal’ val-

ues (i.e., spanning a mix of different but acceptable behavioral modes). An alert is generated if the

value falls below what is expected (i.e. a chosen percentile value of the normal-behaviour distri-

bution). A statistically viable sample of movement distances within a normal activity period (e.g.,

the first two months of movement data) is chosen to establish the distribution of ‘normal’ move-

ment activity for a given individual. The percentile (e.g., 1%) is calculated by MovementMonitor

software and this value is stored in a database table ’MovementRateProfiles’. The period of nor-

mal activity can vary between animals and can be re-calculated as more data becomes available.

Results of application of the algorithm to a wounded African elephant are provided in Figure 4 of

the main article.

7

Algorithm A3: Movement Rate algorithm pseudocode

f o r e a c h (a n im a l)
{

MaxSearchTime=Now−24 h o u r s
L o c a t i o n D a t a A r r a y =GetGPSData (MaxSearchTime , an im a l)
C u m u l a t i v e D i s t a n c e =0
f o r (i n t i =1 ; i < L o c a t i o n D a t a A r r a y . Count ; i ++)
{

TrackSegment= C r e a t e S t r a i g h t L i n e (L o c a t i o n D a t a A r r a y [i] , L o c a t i o n D a t a A r r a y [i −1])
D i s t = C a l c u l a t e D i s t a n c e (TrackSegment)
C u m u l a t i v e D i s t a n c e += D i s t

}
Below=Compare (C u m u l a t i v e i s t a n c e < 1% p e r c e n t i l e Value (Normal A c t i v i t y D i s t r i b u t i o n))
i f (below== t r u e)
{

S e n d A l e r t ()
}

}

6.4 Immobility

The Immobility algorithm searches for clustering of data-points that fall within a critical radius

and that extend beyond a biologically relevant threshold time. The algorithm is based on agglom-

erative weighted centroid clustering (Legendre and Legendre, 1998) similar to that used by Knopff

et al. (2009) and continuously updates a ‘Cluster’ through the addition of successively acquired

positions. The cluster radius is calculated as the mean distance of each point in the cluster from the

cluster’s centroid. The MovementMonitor software references a database table ’ImmobilityPro-

files’ to look-up algorithm parameter values for a particular chronofile.

Determining the critical radius value is a trade-off between missing actual clustering of data-

points by making the radius too small, or setting the radius too large and triggering false positives

(misidentifying a non-cluster as a cluster). The threshold time is species specific and depends

greatly on how long one would reasonably expect an animal to remain stationary. For African

elephants we estimate this at 5 hours. A within-cluster percentage value is also defined to allow

for the occasional positional error and therefore the calculation depends only on a percentage of

points occurring within the critical radius.

We tested the performance of our algorithm on six African elephant movement datasets where

the animal had been killed by poachers but where the tracking unit continued to function post-

8

mortality. We ran our test using a month of positions preceding the animal’s mortality and twenty-

four hours of positions post-mortality. The clustering algorithm was repeatedly run over each

dataset by varying the cluster radius value between 1 meter up to 60 meters using a moving window

tool and while keeping a threshold time of 5 hours and a within-cluster percentage of 80%. Results

are found in Table A3. We found that a cluster radius of 13 meters successfully picked up on all

mortality events.

Algorithm A4: Immobility algorithm pseudocode

f o r e a c h (a n im a l)
{

C r e a t e a new C l u s t e r
S e t C l u s t e r . Time=Now
S e t C l u s t e r . C r i t i c a l R a d i u s = C r i t i c a l R a d i u s
S e t Thresho ldTime =Now−5 h o u r s
S e t MaxSearchTime=Now−24 h o u r s
L o c a t i o n D a t a A r r a y =GetGPSData (MaxSearchTime , an im a l)
f o r (i n t i =0 ; i < L o c a t i o n D a t a A r r a y . Count ; i ++)
{

C l u s t e r . AddLocat ion (L o c a t i o n D a t a A r r a y [i])
C l u s t e r . ComputeCentre
numWithin= C l u s t e r . D e t e r m i n e N u m b e r P o i n t W i t h i n C r i t i c a l R a d i u s
numTotal= C l u s t e r . T o t a l N u m b e r P o s i t i o n s
p e r c e n t =numWithin / numTotal
i f (p e r c e n t >= C r i t i c a l P e r c e n t a g e)
{

S e n d A l e r t ()
E x i t A lgo r i t hm

}
}

}

9

Table A3. The critical radius values sufficient to detect mortality in movement datasets of six
African elephants killed by poachers. A month of data prior to, and 24 hours after, the mortality
were used for the analysis. The number of false positives triggered by the algorithm is given for
each of the critical radius values (e.g., for the animal ‘Prunella’, the critical radius value needed to
detect the true mortality event was 13 meters but the algorithm also generated two false immobility
alarms in the prior month when using that radius value).

Elephant Sex Critical Radius
(Meters)

False Positives
(Number)

Chemi Chemi M 7 0

Kijiji F 10 0

Marania M 4 0

Mercury F 4 0

Prunella F 13 2

Soboiga M 3 0

7 Alert Dissemination

Once an algorithm has positively identified an alert condition, the MovementMonitor software will

query an Alerts database (PostgreSQL version 8.4) to determine the users who are subscribed to

a particular chronofile/algorithm combination and store details of the alert within the database

(Fig. 1 of manuscript). Users can choose to receive alerts via SMS, E-mail or both. Our system

currently uses a physical server located in Nairobi, Kenya that has a GSM modem for sending SMS

alerts. The MovementMonitor software communicates to the Kenya modem using a custom built

SMS API we developed using Microsoft Windows Communication Foundation (WCF) technology

to disseminate alert SMS messages using custom-built software called ’MessageServer’. E-mail

alerts are also issued by MovementMonitor using a C# POP3 class library that sends alerts using

the Google Gmail E-mail system (Fig. 1 of manuscript). We provide an example alert report

generated by the immobility algorithm and received by E-mail in Fig. A2.

10

Fig. A2. An example immobility alert received via E-mail. This particular report corresponds to
an elephant having dropped its collar which subsequently triggered the alarm.

8 Data Access

User access to tracking and alert data is a key component of the system and can be achieved in

several ways. The first is via a Key Hole Markup (KML) tracking data service that is accessed

via an HTTP request. The server-side application was built using Microsoft ASP.Net technology

hosted within the Microsoft Internet Information Services version 7 (IIS7) framework, and handles

incoming HTTP queries from remote clients. KML data can be consumed by a variety of clients,

but primarily using the Google Earth geo-browser both for desktop clients and for mobile devices

(e.g., Apple iOS iPhones and iPads and Google Android phones and tablets). The KML tracking

data API provides a quick way of visualizing data and accessing the latest coordinates and move-

ment of an animal. The API will by default return the most recent 16-days of filtered data. Filtering

is accomplished using a cut-off speed and rejecting any GPS points in the animal’s movement path

that could not be reached using a speed under the threshold value. The API also has the option of

turning filtering off to look at all raw locations and for expanding the time window beyond two

11

weeks. Temporal replay of data is possible in Google Earth using the ’time-slider’ functionality;

a program feature that was integrated based on Save the Elephants’s data (Rebecca Moore: Pers

Comm). Similar to the Tracking data API, a second KML Alerts API is available for querying the

locations of alerts and displaying their locations and times.

Data is also made available using an API for Esri clients (e.g., ArcMap). The server-side ap-

plication was built using Microsoft WCF technology and is hosted using IIS7. Desktop clients

install the ’STEDownloader’ program which is built using Esri Engine Runtime 10.1 software

components, the Microsoft .Net 4.0 class library and the C# programming language. The STE-

Downloader connects to the Esri service using the TCP/IP protocol and updates a locally stored

Esri geodatabase with tracking data from the server AnimalTracking database. Storage of data

within a local geodatabase that resides on the client machine allows for offline access to data as

well as retrieval of complete record sets for scientific analysis. A customized database interface

within the STEDownloader program lets users make advanced selection and filtering operations

on stored locations and extract data for further analyses.

12

Literature cited

Knopff, K. H., A. A. Knopff, M. B. Warren, and M. S. Boyce. 2009. Evaluating Global Positioning

System Telemetry Techniques for Estimating Cougar Predation Parameters. Journal of Wildlife

Management 73:586–597.

Legendre, P., and L. Legendre. 1998. Numerical ecology. 2nd edition. Elsevier, Amsterdam ; New

York.

WDPA, 2013. World Database on Protected Areas (August, 2013 Edition): Accessed Sept 30,

2013. URL www.wdpa.org.

13

