
Appendix A.  Detailed description of model application and derivations. 

Here we provide background and technical information about the food web models that were 

used and assumptions that we needed to make to apply them to our generalized equilibrium 

trade-off model.  We also describe the derivation of the trade-off model, and show the expected 

trade-off in a multi-species model under simplified assumptions about trophic transfer in food 

webs.   

Adjustments to Ecopath Models 

The Ecopath modeling framework permits model developers to represent a single species as 

multiple biomass pools with different trophic positions within the food web.  For instance, a 

large fish predator might be represented as both a juvenile and an adult stage, with separate rates 

(productivity, mortality, consumption) and feeding habitats for each stage.  When species are 

split in this way, the generalized trade-off model because they cannot account for a flow of 

energy across biomass pools to represent a stage transition from juvenile to adults.  We therefore 

aggregated models so that a single biomass compartment represented a single population or 

stock.   We used standard aggregation approaches (Gaichas et al. 2009) that conserve the total 

biomass and biomass flux in and out of compartments.   

We had to make additional assumptions when previously published models did not depict steady 

state conditions.  In these models, most biomass pools are assumed to be at steady state while 

some biomass levels for some groups were assumed to be changing through time (a non-zero rate 

of biomass accumulation was specified).  We note a logical inconsistency in making these 

assumptions, as it is exceedingly unlikely that in a multi-species food web all populations but a 

few would be at steady state.  This logical inconsistency made it impossible to analytically solve 

for steady state conditions without achieving non-zero population levels.  For that reason, we 



made the simplifying assumption that the models represent a steady state system by adjusting 

population productivity parameters as needed to create a balanced, steady-state condition.  We 

implemented this assumption by adjusting the non-predation mortality rate or total production 

rate of each species so that each biomass compartment was at steady state.  In no cases did this 

require changes to total mortality rates and / or productivity rates that exceeded 20%. 

 

 
Derivation of Generalized Trade-off Model 
 
We start with a generalized model of population dynamics for any given species: 

          (A.1) 

Where xi is some measure of abundance (density, numbers, biomass) of species i, the vector x 

indicates the collection of abundances (xi,….xs) for all s species in the system, and yi is the 

removal of species i due to fishing,  The function ri(x) gives the per capita growth rate of species 

i as a function of all other species abundances, and our derivation is independent of the form of 

this function.   

It follows then that at equilibrium densities, , yield equals: 

           (A.2) 

Next, we assume that fisheries yield near equilibrium is proportional to current abundance. 

Specifically,   

           (A.3) 



where Fi is the fishing mortality rate on species i. Combining (A2) and (A3), at equilibrium we 

have 

           (A.4) 

The remainder of the derivation is greatly simplified by the introduction of some matrix notation.  

Let d(x) be the diagonal matrix obtained by placing the elements of vector x on the diagonal, i.e. 

d(x)i,i=xi  and d(x)i,j=0.  We can then write the system of s equations in A2-A4 as  

          (A.5) 

           (A.6) 

            (A.7) 

Our object of interest is the vector of changes in y for a change in yj  which we obtain by 

differentiating A5-A7 with respect to Fj and then rearranging to obtain derivatives with respect 

to yj.  Note that for any two vectors, a and b, the product d(a)b corresponds to elementwise 

multiplication of the two vectors, i.e. the Schur or Hadamard product. Because of this, d(a)b = 

d(b)a which we use in obtaining Eq A8 and A9: 

       (A.8) 

          (A.9) 

Here, Jr( ) is the Jacobian matrix of partial derivatives of the per capita growth rates, i.e.  

Jr( )i,j=δri( )/δxj.  To find the change in yield of species i for a given change in yield of species 



j, we assume that changes in yield are initially driven by changes in Fj and that the fishing 

mortality rates for the other species don’t respond directly, i.e. δFi/δFj =0 for ≠ 𝑗𝑗 , or in vector 

form ∂F/∂Fj=1j , where 1𝑗𝑗  is a column vector whose jth element is 1 and all others are 0.  

Assuming that Jr( ) is invertible, we can combine Eqs A8 and A9 to get 

       (A.10)  

Eq. A10 gives us the change in yield for a change in the jth fishing mortality rate.  We can obtain 

the change in yield for changes in all F by stacking these side-by-side for j=1…s, to obtain 

       (A.11) 

where the indicator vector has disappeared because the collection of indicator vectors is just the 

identity matrix.  To make the trade-off between yields of different species explicit, we need 

derivatives with respect to yj.  To get these from Eqs A10-A11 we use the fact that δyi/δyj = 

(δyi/δFj)/(δyj/δFj) and note that the denominator is just the jth diagonal element of A11.  Using 

D(A) to represent a matrix with the same diagonal as matrix A but with off diagonal elements set 

to 0, we can divide each element of A11 by the appropriate partial derivative by multiplying 

(A11) by the inverse of the D(A).  The resulting matrix T( ) summarizes the trade-offs in yield 

near equilibrium .  Specifically, 

  (A.12) 



Note that we have multiplied through the [Jr( )]-1term in (A12) to simplify the notation. The jth 

column of T( ) represents the vector of changes in yield from all species that would result from 

a change in yield of species j, assuming a constant level of fishing mortality on all other species. 

We can also reveal the changes in biomass levels associated with a change in yields (i.e., of ∂

/∂y ) for each species using an analogous approach.  Namely, we begin by taking the derivative 

of equation A7 with respect to F to find that  

         (A13) 

Finally, to derive the matrix of ∂ /∂y, we use the fact that ∂ i/∂yj=(∂ i/∂Fj)/{∂yj/∂Fj), which can 

be obtained by combining (A13) and the diagonal elements of (A11): 

     (A.14) 

Derivation of yield trade-off in two species donor-control system 

Here we show that the yield trade-off between two species donor-control system should be a 

linear function of the predator mortality fraction, the predator conversion efficiency and the 

fishing rate on predators.  Consider two species whose biomass is represented by x1 and x2, 

where x2 feeds upon x1 in addition to other species x3…..xn.  Each species’ production is 

governed by its conversion efficiency and consumption of its prey which is dictated by donor 

controlled linkages, minus predation and fishing.  

 



      (A.15) 

where αi,j is the proportion of biomass in prey i flowing to predator j, GCEi,j is the conversion 

efficiency of predator j consuming prey i, y1 is yield of prey and F2 is fishing mortality rate on 

predator.   Note that the sum of the terms αi,j  is the total non-fishing mortality, which we denote 

Mi, and the sum of product aijxi equals total consumption rate of predator j, Cj. For simplicity 

here, we assume that conversion efficiency is primarily driven by metabolism, so that we can 

assume that it is constant over all prey types for each species (GCE1, GCE2 for prey and 

predator, respectively).  Under this assumption, the steady state biomass levels are: 

 

     

   (A.16)

 

where p1,2 is the diet fraction of prey 1 to predator 2.  Because predator yield equals F2 , we 

differentiate this product with respect to y1 to derive the yield trade-off: 

       (A.17) 

This can be simplified by recognizing that α1,2/M1 is the proportion of total non-fishing mortality 

of the prey that is due to predation to this focal predator (the predator mortality fraction).  We 

define this as M’12.  Also, F2/(F2+M2) is proportion of all predator mortality that is due to fishing, 

defined as F2’.  Substituting these terms, the yield trade-off equals: 



 

        (A.18). 

 

Thus, in a donor control system where there is no indirect energy pathway from predators to 

prey, the yield trade-off is always negative and has a magnitude equal to the product of predator 

conversion efficiency, predation fraction, and relative fishing intensity on predators.  
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