APPENDIX B

We consider the case in which the dynamic spatial covariance is close to the

following:
C(d)=1,, ford>d,
. (B.1)
Vi <C(d) <V, +V,, for0<d<d,

Let O, and O, be two square regions, each having size Lx L. Suppose that they are

separated by distance D, which is much larger than L (L<<D). The average seed crop in area

O, and in area Q, are:
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respectively. We abbreviated the dependence of ¢ in (B.2) for simplicity. Then the

covariance between B and B is
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from Eq. (B.2) and Eq. (8a). Since our model generates spatial patterns that are isotopic, the

crosscovariance between two time series sampled from x and y is a function of their



distance, and hence C(x,y)z é‘ﬂ|x - y||) Using this expression and the

(B.1), Eq. (B.3) beomes,

Cov, (B, P,)=Vj, .

In a similar way, we have
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Using Eq. (B.1), it has an upper bound:
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The correlation coefficient between B and P, is

Cov, (R, P,) Vi
Var,(P(t)) m?
a’?( 1( )) be + L2 wa

assumption of Eq.
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which can be very close to 1 when the size of the sampled area L is much larger than the

correlation distance d, (L >>d,.). This argument holds if ¥}, is positive, however small it

may be, and hence whenever there is an element of global coupling over the forest.



