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Appendix A. The jumping distribution for missing data

In this appendix we describe our Metropolis-Hastings (MH) algorithm for updating missing patch data. First we

introduce some notation. While updating, the model parameters Θ are kept fixed. For notational convenience we

therefore drop the dependence on Θ. Furthermore, let the proposal for patch i in year t be denoted by X∗i (t) to

distinguish it from the current state Xi(t). Of course non-missing data are not updated, so that for these patches

the proposed state and current state are identical. ByX−i(t) we mean the states, at time t, of all patches except

patch i, and by X−i we mean the states of all patches in all years, except Xi(t). Our mechanism to generate a

proposal is motivated by the Gibbs sampler for updating a single patch (O’Hara et al. 2002). The proposal for

a single patch must, of course, be either 1 or 0. The ratio fi of the probabilities of these two states for patch i

conditional onX−i is

fi =
P [X∗i (t) = 1|X−i]
P [X∗i (t) = 0|X−i]

. (A-1)

By the definition of conditional probabilities this becomes

fi =
P [X∗i (t) = 1,X−i]
P [X∗i (t) = 0,X−i]

(A-2)

and using the properties of the metapopulation model expressed in (3) and (2) in the main text, we can simplify

this to

fi =
P [X∗i (t) = 1|X(t− 1)] P [X(t+ 1)|X∗i (t) = 1,X−i(t)]
P [X∗i (t) = 0|X(t− 1)] P [X(t+ 1)|X∗i (t) = 0,X−i(t)]

, (A-3)

so that we, in fact, condition only on the two adjacent years t− 1 and t+ 1.

Because the numerator and the denominator in (A-1) must sum to 1, we get

pi = P [X
∗
i (t) = 1|X−i] =

fi
1+ fi

. (A-4)

Proposing X∗i (t) = 1 with probability pi (and leaving the other patches unchanged) yields a Gibbs sampler,

because (A-4) is a full conditional distribution, and the acceptance ratio is equal to 1.
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The Gibbs proposal is costly to compute because each probability in (A-3) involving X(t + 1) is already a

product of N probabilities (see equation (2) in the main text). The proposal can be simplified considerably by

keepingX∗i (t) at its current stateXi(t) when calculating the transition probabilities forXj(t+ 1) for j 6= i in the

numerator and denominator of (A-3). Then 2(N − 1) probabilities cancel out and we obtain, instead of (A-3),

efi = P [X∗i (t) = 1|X(t− 1)] P [Xi(t+ 1)|X∗i (t) = 1,X−i(t)]
P [X∗i (t) = 0|X(t− 1)] P [Xi(t+ 1)|X∗i (t) = 0,X−i(t)]

, (A-5)

and, instead of (A-4),

epi = efi
1+ efi . (A-6)

In our MH-algorithm, we calculate (A-6) for each missing patch in year t and then propose, for each patch i

independently,X∗i (t) = 1 with probability epi. The jumping probability fromX(t) toX∗(t) at step u is thus
Ju[(X

∗(t)|X(t)] =
Y
i

epX∗i (t)i (1− epi)(1−X∗i (t)). (A-7)

By interchanging the role ofX∗(t) andX(t) in (A-5) - (A-7), we also obtain Ju[(X(t)|X∗(t)] so that with

f =
P [X∗(t)|X(t− 1)] P [X(t+ 1)|X∗(t)]
P [X(t)|X(t− 1)] P [X(t+ 1)|X(t)] (A-8)

the acceptance ratio r is

r = f
Ju[X(t)|X∗(t)]
Ju[X∗(t)|X(t)] . (A-9)

Updating missing values in the last year (T ) is not covered by the foregoing, but it can be done by Gibbs sampling,

because P [Xi(T )|X(T − 1),X−i(T )] = P [Xi(T )|X(T − 1)] which can be calculated explicitly.

It is instructive to see which proposals are generated when Ei and Ci would be constant over time (i.e.

when the connectivity of a patch remains the same over time). If Xi(t − 1) = 0 and Xi(t + 1) = 0, then

efi = CiEi/(1− Ci)2 which will be a small value if Ci and/or Ei are small, so that epi is also close to 0, so that
with only a small probability a 1 is proposed in year t. Similar considerations show that if Xi(t − 1) = 1 and

Xi(t+ 1) = 1, epi is close to 1 so that with a large probability a 1 is proposed in year t. IfXi(t− 1) 6= Xi(t+ 1),
efi = (1− Ei)/(1− Ci) so that if Ci and Ei are equal or both small, epi is about one half. All of these proposals
make intuitive sense.

In the tree frog case study, our proposal mechanism accepted more than half of the proposals for a year. In

simulated data, with lower turnover rates, acceptance probabilities of over 0.9 were observed. Our algorithm is

expected to outperform the Gibbs sampler when many or all patches in a particular year have missing data, as is

the case in our pre-years. However, if there is only one patch missing in a particular year, the Gibbs sampler is the
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most efficient and in that case we use it in our computer software. In the case study with its 202 patches and 25

pre-years, our MH-algorithm was about 10 times faster than an efficient implementation of the Gibbs sampler.
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