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Appendix A. Technical details of the models 

Colonization model  

 The colonization rate model can be derived from the following assumptions. It's an 

entirely standard stochastic colonization model, so if the description in the text made sense to 

you, it's safe to skip this section. Otherwise, an introductory text on stochastic processes (e.g. 

Grimmett and Stirzaker 1992, section 6.8 and associated homework exercises) can be consulted 

for background information on Poisson processes.  

 We assume that the times at which an Occupied patch emits colonists is given by a 

Poisson point process on the line with constant intensity Q, resulting from a constant number of 

individuals in the patch with a constant propensity to migrate. Because our model classifies 

patches by successional state without tracking population dynamics, the value of Q is assumed to 

be the same for all Occupied patches and constant over time. Thus, when there are m occupied 

patches, the departure times of migrants from all patches combined is a Poisson point process 

with intensity Qm.  

 In the nonspatial model, emigrants are dispersed uniformly at random over the entire 

territory occupied by the population. Each emigrant has some probability a of entering any given 

patch (hence probability Na of entering some patch, where N is the total number of patches). 

Note that emigrants do not select among patches: any patch, whether Vacant, Occupied, or 

Refractory, is equally likely to be the recipient. Thus when m patches are Occupied the number 

of migrants arriving into a given Vacant patch is a Poisson point process with intensity 

with c=aQ, which has the properties stated in the text.  aQm cm=

 



 

 In the spatial model, emigrants disperse non-uniformly with a higher probability of 

entering nearby patches. Consider an Occupied patch j emitting emigrants as a Poisson process 

with rate Q, and a patch i (in any successional stage) at distance . The probability that an 

emigrant from patch  j  enters patch i is assumed to be C , where C C  are 

such that the probability of an emigrant landing in some patch is at most one: 
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− +∑  for all i, with the sum running over all other patches in the network). 

Arrivals into a Vacant patch i thus constitute a Poisson point process with rate 

1 {Patch j isexp( )1ij
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c dα− 2+ Occupied} c∑ where , corresponding to the colonization rate 

stated in the main text.  
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Large-network deterministic approximation 

 The large-network deterministic approximation involves two assumptions. The first is to 

consider an effectively infinite network, whose state is specified by n a , the frequency 

distribution (density) of patch ages a at time t (the age of a patch is the time since it was 

colonized). The second is to assume that stage transitions (e.g., the number of vacant patches 

being colonized per unit time) occur at exactly their expected rates, given the current number of 

patches in each stage. Consider first the case of constant refractory stage duration R. Under the 

stated assumptions, the age-distribution of Occupied and Refractory patches ( ) 

follow the McKendrick-VonFoerster equation without mortality:  
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Occupied patches are "born" as a result of colonization:  
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where  is the total number of occupied patches. Vacant patches are added by 

patches increasing in age past 1+ R, and lost through colonization,  
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Equations (1)-(3) can be solved numerically by considering discrete age-classes and time-steps 

of duration , and iterating the age-class transitions described by (1) and the inputs and 

losses specified by (2) and (3). Note that equation (3) is actually redundant, since the total 

number of patches N is constant, hence V N .   
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 If the duration of the refractory period is random with exponential distribution and mean 

E[R], then equations (1) and (2) still apply for Occupied patches (0<a<1), and there are ordinary 

differential equations for both the Refractory and Vacant patches:  
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If the Refractory period is random but non-exponentially distributed, the large-network 

deterministic approximation is given by (1) with a "mortality" term on the right-hand side for an 

age-dependent "death" rate of Refractory (a>1) patches into the Vacant state. The total "death" 

rate then replaces  as the input rate for V(t) in equation (3).  (1 , )n R+
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