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Appendix A :  Markov chain Monte Carlo (MCMC) algorithms.

This appendix discusses the MCMC algorithms used to sample from

P(®,vy,..,vy|Y1, ..., Yy) for the MCKL method, the kernel density estimator for the
MCKL method, and calculation of final likelihood values after MCKL estimation of the
MLE. First I describe an MCMC algorithm for P(v|Y, ®) for a single replicate, and then I
describe the algorithm for P(®, vy, ..,vn|Y1, ..., Yy). For each I describe example
Metropolis-Hastings sampling steps in detail and then list the full combination of sampling
steps used.

To set the basic concepts (Gilks et al. 1996; Robert and Casella 1999), consider a
Metropolis-Hastings MCMC algorithm to sample from the distribution P(A). Let A; and
A1 be the current and next values of A. MCMC works by considering a random proposal
value, A’ and using an acceptance probability to decide whether 4,1 = A" or A;;1 = A;.
Specifically, if the proposal density is ¢(A’| A;), the acceptance probability is:

P(A/)Q<Ai’A/))
P(A;)q(A'|A;)

Pccept = min <1, (A.1)
Metropolis-Hastings algorithms for different dimensions or blocks of dimensions of A can
be used iteratively or randomly to produce a chain with stationary distribution P(A).

MCMC algorithm 1

For sampling from P(v|Y,®) (omitting the j subscript), write the components of v as

v =(0,21,2a,...,290) Where z; = (¢ g, 2.7, 2t.4). To sample from z;, draw a proposal z;
from ¢(z;|z), here a normal proposal distribution with mean z; and covariance matrix O'Z] ,
where I is the 3x3 identity matrix and o, = 0.5. Let 2/ be the noise vector with this
proposal value, v/ = (3,21, .., 2}, .., Z299). Then the acceptance probability is:

(A.2)

Paccept = min 17
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In this case, the ratio of “backward” to “forward” proposals, ¢(z|z;)/q(z;|z:), from (1)
(with A = z,) is always 1 and has been omitted. The probabilities of 3 and the other z
values are the same for v and v/, so their probabilities also cancel. To complete this
sampling step, a uniform random variable is drawn, and z, is accepted if the uniform draw
is less that Phecept- Otherwise z; is rejected and the next value in the Markov chain is the
same as the previous value, z;.

To obtain sampling steps for 3, I used a lognormal sampling distribution with the
log of the proposal centered on the log of the current value:

q(B'3) x 1 exp|[— (10g(ﬁ')2—02l0g(ﬁ))2

G ] (A3)

where for this step o, = 0.15. The acceptance probability for this step is calculated
similarly to (2), with § and 3 in place of z and z’, but in this case the proposal distribution
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is not symmetric, so the ratio of “backward” to “forward” proposals must be included:

PY|V, @)P(ﬁ’l@)Q(ﬁlﬂ’)>
P(Y|v, ©)P(31©)q(']5)

A more general way to think about this type of sampling step is that we can transform
coordinates to work with log(3) instead of (3, use a proposal distribution in those
coordinates, and then account for the transformation back to our original coordinates when
we calculate P(z'|®), which yields the same acceptance probability. This approach will be
used for the next MCMC algorithm.

Sampling steps for different components of v can be combined in many ways. One
useful approach is to sample from adjacent z;, values together. For example, to sample from
five adjacent z; values with ¢ = 1..5, we could propose z; = z; + 7, where 7 is normally
distributed with mean 0 and covariance matrix af[ , i.e. use the same normal shift for
several z;'s. We then calculate Pyecept in the same way as (2).

(A.4)

Paccept = min 17

One iteration of the full sampler for (v|Y,®) consisted of samples from blocks of 10
z; values (¢t = 1..10 and 11..20), blocks of 4 z; values (¢t = 1..5,6..10,11..15, 16..20),
individual samples from each of the 20 z; values, and 5 samples from 3. In the MCMC
literature, a sampling algorithm that efficiently moves around the target distribution is
termed “well-mixed”, and in the model here mixing 3 turns out to be especially important,
which is why 5 sampling steps for 3 were used for each iteration.

MCMC algorithm 2

Metropolis-Hastings sampling in the MCKL algorithm for (©, vy, ..,vn|Y1,.., Yx) was
considerably more complicated because there were strong correlations among the
parameter dimensions and between the parameter dimensions and the process noise
dimensions. MCMC algorithms that sample in one direction at a time can be inefficient if
the sampling directions do not match the directions of correlation in the target
distribution. An example of a correlation among parameter dimensions is that pz was
negatively correlated with ag because higher fecundity and lower survival can together
produce similar population trajectories, and thus similar likelihoods, as lower fecundity and
higher survival. An example of a correlation between parameter dimensions and process
noise dimensions is that different process noises were more likely (given the data) with
higher fecundity and lower survival than with lower fecundity and higher survival.

To obtain good mixing, I used a more complex set of Metropolis-Hastings steps than
in MCMC Algorithm 1. A first change was that for ©, I used a parameterization different
than that of the text. Instead of ag, ay, and aa, I used Sg = Sg(0), S; = S,(0), and
Sa4 = S4(0). Second, working from this parameterization, I combined a number of sampling
steps that move in directions of parameters and/or states that are motivated by biological
interpretations of the model. An example to be explained in detail is of sampling Sg and
(01, Pa, .., Bn) together. This makes sense because a shift in S changes the survival values
for each replicate, so a matching shift in fecundity values can produce more likely state
trajectories. A biologically-motivated way to do this is to draw a random proposal value of
Sg and then choose ; values to hold constant the number of eggs that would mature to
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juveniles in the mean environment: k; = ﬁiSéE . Given a proposal value S%, k; can be kept
constant by choosing the proposal 3 value 3 = 3;(Sg/Sy) 2, for each i. However, this
adjustment affects the Metropolis-Hastings algorithm and must be accounted for as follows.

View (Sg, k1, ..., kn) as a coordinate transformation,
(Sg, k1, ... kn) = g(SE, B, .., Bn). The proposal probability in the transformed coordinates
involves only the Sg dimension. The proposal probability in the original coordinates is
given by standard probability theory as:

P(SEaﬂla "7ﬁN)
’g/(SEaﬁla 7ﬁN)’

where ¢'(Sg, (1, ..., On) is the Jacobian matrix of derivatives of g with respect to each of its
arguments, and |¢'| is the determinant of the Jacobian. In this example, the Jacobian has
non-zero values only on the diagonal and on the left-most column. The diagonal values are
(0Sg/0SE = 1,0k /001 = SgE,  0kn /00BN = SéE) The left-most column elements drop
out because the determinant of this matrix structure reduces to the product of the diagonal
elements.

P(SEaklv"ka) = (AS)

Now the acceptance probability is:

I, P(Yilv), ©)]P(Sp) [T, P(5]1©))S5 " a(Ss|Sp)
T, P(Yilvi, ©)]P(Se)ITL, P(5:1©)1S% " #4(Sp|Sk)

) (A.6)

Paccept = min(L

where as before prime indicates proposal values and no prime indicates current values. For
a proposal distribution ¢(S%|Sg), I used a “reflected normal” proposal, which is obtained
by adding a normal random variable to S and “reflecting” about 0 or 1, since we must
have 0 < Sg < 1. “Reflecting” means that, for example, if S = 0.95 and the normal
random variable is 0.07, instead of S%, = 1.02 we would use Sj; = 0.98. (In theory one
might need multiple reflections, but in practice that didn’t arise for the proposals used
here.) With reflections it still turns out that ¢(Sg|Sg)/q(S%|SE) = 1.

With this general approach to constructing Metropolis-Hastings steps in temporarily
transformed coordinate spaces, with the transformation accounted for by a Jacobian rule
like (5), one can easily use steps that take advantage of biological interpretations of the
model. Of course there are simpler approaches to obtain valid MCMC samplers, but the
steps used here greatly improve efficiency over sampling one dimension at a time. The
Metropolis-Hastings steps I used for a full sampling iteration were: each of bg, by, and by
in log coordinates; Sg with each (3,5 éE held constant by changing 3;; S; with each @Sf"
held constant; Sg and S; (both randomly sampled) with each ﬁjS]];iE 55" held constant; Sg
and bg (both randomly sampled with bg in log coordinates) with each ﬁjSéE held constant;
Sa with each 3;/(1 — Sy4) (lifetime reproductive success) held constant; Lg in log(Lg — 2)
coordinates; Lj in log(L; — 2) coordinates; Lg + L; holding Lg — L; and each ﬁjSéESﬁJ
constant; pg in log coordinates; o in log coordinates; and all process noises sampled with
the same combination of steps described above for MCMC Algorithm 1.

The state of (0, vy, .., vy) was saved after every 15 iterations, until a sample of
M = 10000 states had been obtained. (Implemented in GNU C++ with a 2.0 GHz
Pentium processor, each run takes approximately 1 hour.) Finally, the “priors” for the
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parameters were: N(u = 4,0 = 100) for up (although this is centered on 4, it is essentially
flat and provides no prior information); exponential distribution with mean 100 for o, L,
Ly, bg, By, and by; and uniform distribution between 0 and 1 for Sg, S, S4.

Kernel Density Estimation

For MCKL, samples {®;} were reparameterized into standardized principal components
before maximization. This linear transformation gives approximately independent,
similarly scaled coordinates. In general, reparameterization of ® after sampling but before
kernel density maximization requires consideration of Jacobians of the parameter
transformation (as in equation 5). However, the transformation to principal coordinates is
linear, so the Jacobian is constant and MCKL maximization is unaffected.

The kernel K, was multivariate Gaussian and independent along the principal
compenent axes. The smoothing bandwidth h in each direction was 0.66 and 0.79 for null
and alternative hypotheses, respectively. These values were chosen so that for a unit
normal Gaussian likelihood — approximately the shape of the principal components sample
— and MC sample size M = 10000, there would be approximately a 95% chance of
obtaining an estimate with likelihood > 0.95 of the true maximum, which for
log-likelihood-based hypothesis testing is quite accurate.

Final Likelihood values

The MCKL method gives a maximum likelihood known only up to the unknown constant
Cp. To estimate the actual likelihood at the MLE, I used MCMC Algorithm 1 to obtain a
sample from (v;|Y;, ®) for each i, estimated the mean and covariance matrix of this
sample, and used a multivariate normal distribution with that mean and covariance as an
importance sampling distribution to calculate the likelihood. This importance sampling
calculation is similar to equation (10) of the main text, with a different sampling
distribution, Pg(v;), for each i. For MCMC Algorithm 1, process noises were saved after
every b sampling iterations until a sample of 2000 was obtained to estimate the mean and
covariance for the sampling distribution, and then a sample of 10000 points from that
distribution was used for the likelihood estimate.
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