CEDL script User’s Guide v1.0
April 22, 2005
N. Bert Loosmore nh1@u.washington.edu

1 Introduction

This section describes how to use the provided CEDL - Complete Empirical
Distance List software functions. The functions test an observed pattern against
a selected null distribution. In the current version of the software, the null
distribution defaults to CSR, and to test a different Hy, the source code must
be modified.

The software is written to run under R v1.9.1, and requires the spatstat
library. It should also work under S+ with slight modifications. These have not
been included and have not been tested.

2 Obtaining and loading the software into R

The latest R source code, including additional documentation, is available for
download at:
http://faculty.washington.edu/edford/research/research home.html

Please review the newest version of the documentation as these in-
structions or the interface may change.

Currently, the software is provided as a script (text) file and thus can easily
be modified by the user. To load the script file and hence make the necessary
functions available, at the R prompt (>) type:

> source("cedl_scr.r")

If the script loads correctly, it should return with a clean prompt.

3 To test an observed pattern

Two main functions, one for the G and one for the K, exist within the script
file that should be called by the user. Additional functions exist within the file,
but these are helper functions that the basic user will not need to modify.

The interface to the two functions are the similar. To test a pattern using
the G statistic use ced1.G(). The function declaration is:

cedl.G <- function(obs.pp, s, lambda=obs.pp$n, tmax=1, prec=0.00001,
use.exist=F, verbose=F)

Input Variables:

obs.pp The observed pattern, which should be of type pp as defined in the
spatstat library. Also, observed pattern must be scaled to a unit square
boundary box.

s The number of patterns from which to create the null distribution. Note since
the null distribution contains the observed pattern, set this number to 1
less than the actual s value. For example, for a null distribution with 1000
total patterns, set s = 999.

lambda Optional. Allows the user to set the point intensity of the simulated
pattern. If not specified, this is extracted from the observed pattern.

tmax Optional. Specifies the upper limit of integration. Can be used to set a
transistion point for w(t) = 0.

use.exist Optional. If set to T causes the function to use the existing my .pp.list
pattern list instead of generating a new one. This allows, for example, a
user to run the goodness of fit test against the same set of patterns used
for drawing a simulation envelope. Alternatively, this allows a user to
build the pattern list from non CSR. patterns to test a different Hy.

verbose Optional. Causes additional status information to be printed to the
screen (e.g. which subfunctions are being called) during processing. Useful
since some parameterizations take a while to execute.

Return Values:
The function returns a list containing three variables:

p-val The p-value of the observed pattern when tested against the null hypoth-
esis that it comes from the same distribution as the simulated patterns.

ui The list of u; values for the observed pattern u; and the simulated pat-
terns u;, ¢ = 2,...,s. This is returned to allow the user to inspect the
distribution of the wu;.

Go The grand mean calculated over all s patterns.

my.dist The distances at which the grand mean is calculated. Ranges from 0
to tmax.

The p-value of the observed pattern is printed to the screen if verbose is set
to T. The p-value of the observed pattern is calculated as:

p.val <- (length(uilui>=ui[1]]))/(length(ui))
Hence if the observed pattern has the largest u; value, then the p-value is cal-
culated as 1/s.

Similarly, to test a pattern against the K statistic use ced1.K(), where the
function declaration is:

cedl.K <- function(obs.pp, s, lambda=obs.pp$n, tmax=0.25,
prec=0.00001, use.exist=F, verbose=F)

Note here that the tmax value defaults to 0.25. As described above, this should
be set based on the researchers knowledge of the ecological system. All other
input variables and the return variables are the same.

4 To generate an alternate H

This section desribes how to generate a pattern list from patterns other than
from a CSR process. Note that under normal operation, the cedl.G() or
cedl.X() functions will generate the pattern list.

The gen.ext.pp.list() function is used to generate the external pattern
list. It defaults to creating CSR patterns. To generate patterns from an alter-
nate process, two things are necessary. First, this function needs to be modified.
Modify the following line:

my.pp.list[[i]] <<- rSSI(r=0.0045, n=npts, giveup=10000)

to include the process of interest. The current example is for a Strauss inhibition
process with an inhibition radius of 0.0045. See the spatstat user’s guide for
detail about other possible spatial processes. Second, call this function prior to
the call to ced1.G() or cedl.K(). When calling gen.ext.pp.list() set the
type variable to something other than "CSR".

Lastly, as described above, when calling ced1.G() or ced1.K(), set use.exist=T.

5 Example code

=

load the cedl_scr.r script file (make sure it can be found in the path!)
> source("cedl_scr.r")

create an inhibition pattern with 100 points with an inhibition radius
of 0.02 (on a unit square).
> my.pp <- rSSI(r=0.02, n=100)

test the pattern using the K statistic against HO of CSR based on
2000 total patterns, but only up to a distance of 0.10
> my.K.rslt <- cedl.K(obs.pp=my.pp, s=1999, tmax=0.10)

