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Appendix A: Mathematical Details of the CTCRW Model

Discretizing the continuous-time model
Here we present the details of discretizing the continuous-time CRW (CTCRW) model

into a form which can be placed into a discrete-time state-space model, so that the fast
Kalman filter and smoother can be used for estimation and smoothing. Durbin and
Koopman (2001) present a similar approach for discretizing an integrated Brownian motion
process for state-space analysis. Here, we modify their derivation for use on an integrated
Ornstien-Uhlenbeck (OU) process.

First, we define the velocity process ν(t) and the position process µ(t) as a function of
a Brownian motion process (note, we have left off the coordinate notation for simplicity),

ν(t) = γ +
σe−βt

√
2β

W
(
e2βt

)
(A.1)

and

µ(t) = µ(0) +

∫ t

0

ν(u)du

= µ(0) + γt +
σ√
2β

∫ t

0

e−βuW
(
e2βu

)
du,

(A.2)

where γ is a constant over (0, t], σ and β are parameters, and W (·) is a standard Brownian
motion process with E[W (t)] = 0, variance V [W (t)] = t, and covariance
C[W (s),W (t)] = min(s, t).

The discretization of the CTCRW model begins be assuming that the process is
sampled at times t1, . . . , tn. Let = νi = ν(ti) for i = 1, . . . , n. Then, assuming γi is a
constant over (ti, ti+1] and, for t ∈ (ti, ti+1], ν(t) follows an OU process with mean γi,
covariance parameters σ and β, and initial value νi, we obtain the transition equation for
νi+1

νi+1 = γi +
σie

−βti+1

√
2β

W
(
e2βti+1

)

= νie
−βδi + γ(1− e−βδi) +

σe−βti+1

√
2β

{
W (e2βti+1)−W (e2βti)

}

= νie
−βδi + γ(1− e−βδi) + ζi,

(A.3)

where

ζi =
σe−βti+1

√
2β

{
W (e2βti+1)−W (e2βti)

}
(A.4)

is a Gaussian random variable with E[ζi] = 0 and variance V [ζi] = σ2{1− e−2βδi}/2β. The
serial independence of the ζi result from the independent increments property of the
Brownian process. Note, that the OU process parameters were not indexed, but, in general
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they might also vary by time intervals (ti, ti+1]. Even with shifts in mean or covariance, the
process will remain smooth in continuous time. This can be seen by letting δi → 0 and
noting that νi+1 → νi for any β, σ, or γi as long as they are constant over (ti, ti+1]. This
allows for inclusion of covariates which can affect the velocity process; as in the harbor seal
example.

By using the velocity process formulation above, the position process at ti+1, µi+1, can
be formulated in terms of the position and velocity process at time ti,

µi+1 = µi +

∫ ti+1

ti

νie
−β(u−ti) + γi(1− e−β(u−ti))

+
σe−βu

√
2β

{
W (e2βu)−W (e2βti)

}
du

= µi + νi

(
1− e−βδi

β

)
+ γi

(
δi − 1− e−βδi

β

)
+ ξi,

(A.5)

where

ξi =
σ√
2β

∫ ti+1

ti

e−βu
{
W (e2βu)−W (e2βti)

}
du. (A.6)

Again, due to the independent increments property of the Brownian process, the ξi are
serially independent and E[ξi] = 0. Also, the fact that the Brownian process is continuous
almost everywhere on (ti, ti+1], permits exchange of integration order which allows
evaluation of variance,

V [ξi] =
σ2

2β

∫ ti+1

ti

∫ ti+1

ti

e−βue−βv

× E
[{

W (e2βu)−W (e2βti)
}{

W (e2βv)−W (e2βti)
}]

dvdu

=
σ2

β2

{
δi − 2

β

(
1− e−βδi

)
+

1

2β

(
1− e−2βδi

)}
.

(A.7)

The covariance between ξi and ζi is also necessary for likelihood evaluation and can be
calculated in a similar fashion to give,

C[ξi, ζi] =
σ2

2β2

{
1− 2e−βδi + e−2βδi

}
. (A.8)

Random drift model
The properties of the dual scale mean process model presented in the northern fur seal

example can be readily derived given the results of the previous section. Before beginning,
recall the definition of the mean process model

ν(t) = γ(t) + ϑ(t)

=
σγe

−βt/ψ

√
2β/ψ

W (γ)(e2β/ψ) +
σe−βt

√
2β

W (ϑ)(e2β)
(A.9)

where W (γ) and W (ϑ) are independent Brownian motions and ψ > 1 is a time scale
multiplying factor. Note that we have, again, dropped the coordinate notation for
simplicity.
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Using the previous results, the transition equations for the state
αi+1 = [µi+1, ϑi+1, γi+1]

′, in reverse order, are

γi+1 = e−βδi/ψγi + ωi

ϑi+1 = e−βδiϑi + ζi

µi+1 = µi + ϑi

(
1− e−βδi

β

)
+ γiψ

(
1− e−βδi/ψ

β

)
+ ξi.

(A.10)

The state equation error variables are given by

ωi =
σγe

−βti+1/ψ

√
2β/ψ

{
W (γ)(e2βti+1/ψ)−W (γ)(e2βti/ψ)

}

ζi =
σe−βti+1

√
2β

{
W (ϑ)(e2βti+1)−W (ϑ)(e2βti)

}

ξi =
σ√
2β

∫ ti+1

ti

e−βu
{
W (γ)(e2βu)−W (γ)(e2βti)

}
du

+
σγ√
2β/ψ

∫ ti+1

ti

e−βu/ψ
{
W (ϑ)(e2βu/ψ)−W (ϑ)(e2βti/ψ)

}
du.

(A.11)

The variances and covariances given in the northern fur seal movement section are directly
derived from results in the section above along with the independence of W (γ) and W (ϑ).
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