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Appendix B: Simplification of CCA eigenvalue. 

Notation (modified after Legendre and Legendre 1998):  

As with Appendix A, we assume for convenience that we are dealing with fixed plots 

sampled twice, although the results pertain to split plot designs and balanced 

independent samples with no loss of generality. 

Samples are indexed by the letter i: 1, 2, …n 

Pairs of samples or ‘plots’ are indexed by the letter k: 1, 2, …n/2 

Species are indexed by the letter j: 1, 2, …r 

Elements yij of the response matrix Y )( rn×  denote the abundance in sample i (rows) of 

species j (columns) 

y+j = sample totals (sum across rows to get column totals) 

yi+ = species totals (sum across columns to get row totals) 

y++ = grand total for sample by species matrix 

The explanatory variable x is a column vector of length n and is a dummy variable where 

xi equals 0 or 1 for times 1 and 2, respectively.  

The response matrix Y is divided into two rn ×2 submatrices G and H, where G contains 

the samples corresponding to xi = 0 and where H contains the samples 

corresponding to xi = 1. 

p is the proportion of the total abundance in samples where xi = 1,  i.e. ++++= yhp .  



S stands for a dispersion matrix except without dividing by degrees of freedom (see 

Legendre and Legendre 1998, p596). 

D stands for a diagonal matrix of species totals, yi+  

Proof: 

The CCA eigenvector equation (Legendre and Legendre 1998, p596) is: 
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This equation is similar to equation A.1 for the RDA test statistic, but important 

differences exist in how the component matrices are scaled and weighted.  First, Y must 

be scaled by its contribution to χ2 (Legendre and Legendre 1998) into: 
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Without loss of generality, we define the sum of all abundances as 1, i.e. y++ = 1.  Then: 
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The explanatory variable must also be transformed into a weighted standardized variable 

by subtracting the weighted average and dividing by the maximum likelihood estimator 

of the standard deviation:  
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Therefore the standardized value x* is: 
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Also because CCA relies upon weighted multiple regression instead of conventional 

multiple regression as in RDA, the square root of a diagonal matrix of weights D must be 

applied to x* everywhere it occurs in B.1 (Legendre and Legendre 1998, p. 595).  

Therefore the inverse of the variance of the weighted standardized x matrix is a scalar 

equal to: 
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Furthermore, in our case, *x'DQS 2/1  and Q'DxS 2/1*  are column and row vectors respectively.  

The j elements of *x'DQS 2/1  are equal to the j elements of Q'DxS 2/1* , i.e.:   
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Expression B.10 simplifies further by expanding its components and partitioning matrix 

Y into the two sets of independent samples: G and H.  Inserting equation B.3 and 

simplifying yields:  
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Simplifying the numerator and partitioning Y gives: 
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Combining equation B.12 and B.19 gives: 
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The CCA eigenvector equation (B.1) becomes 1
**** 2/12/1

−= 'Dxxx'DQQ'Dx SSSλ  after rearranging 

(as in appendix A) and combining this expression with B.9 and B.20 we see that: 
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To express B.21 in terms of ‘raw’ y, we divide each y-term by the grand total, i.e. y++: 
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