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Appendix D. Derivation of the invasion rate

Coexistence of annual plant species in presence of environmental fluctuations is studied

in detail in Chesson (1994). The basic idea is to evaluate the invasion rate, and partition it into

terms representing the different coexistence mechanisms and the fitness comparison discussed in

the text. Although Chesson (1994) did not consider predation explicitly, its general results apply

here by substituting the combination of competition and predation, F = C + aP, for competition,

C, in Chesson (1994). These general results require certain technical assumptions, which are

satisfied whenever temporal fluctuations are small and the parameter differences between species

are comparable to the variances of the environmental responses. Although these assumptions are

restrictive, we shall find that they point the way to the larger patterns. We specialize the results

of Chesson (1994) to the present context where we assume that the log germination fractions, the

Ej(t)’s, have the same probability distribution for all species as well as at different times. 

Thus,  (where means the expected value, E[Ej(t)], of the random variable Ej(t)).j kE E= jE

Also, , and we denote the common value of this variance by σ 2. For the( ) ( )var varj kE E=

approximations below , we need to assume that this variance is small. However, appendix E

shows that the results are qualitatively correct even with large σ 2.

Like Chesson (1994), we assume independence over time, but the Ej(t)’s are correlated

between species with common correlation ρ.  For simplicity, we assume also that the seed

dormancy rate, and predator attack rate, are same for each species, i.e. sj = sk, aj = ak, for each j

and k. Thus, it follows that the seed loss rate, β, is same for each species, i.e.,  β j = β k. Chesson

(1994) uses a slightly different definition of βj, replacing by exp(Ej
*), where Ej

* is definedG

below.  However, the difference is O(σ 2), which changes the results below by O(σ 4).  This

difference is less than the accuracy of the approximations below as explained in Chesson (1994),



and so is of no significance.  To achieve this outcome, however, we must assume that the Y’s for

different species differ only by O(σ 2).  The final assumption that we make is that the variance in

F over time is also O(σ 2).  This is to be expected when the underlying models would have stable

equilibria in the absence of environmental fluctuations (e.g. Ripa and Ives 2003). That will be

the case in some regions of parameter space, but not in others. Nevertheless, the formulae we

obtain do give qualitatively correct results, at least for two species (appendix E).

To begin the analysis, we note that from equation (C.4) that we can write the growth rate

of species j in the form

(D.1) ,( )( ) ln (1 )j jE E F
j jr t s e Y e −= − +

where t is suppressed on the right in Ej and F for notational convenience; and Y, but not s, is

assumed to depend on j.  This formula is just a special case of the general form used in Chesson

(1994), where 

(D.2) ,( ) ( , )j j j jr t g E C=

gj is an arbitrary continuously twice differentiable function, Ej is an environmental response

satisfying the assumptions above, and Cj is the competitive response of species j, which is here

simply F, the combination of competition and predation. Thus, here ( ) ( , ). j j jr t g E F=

The analysis in Chesson (1994) uses a quadratic-level two-variable Taylor expansion of rj

in Ej and F.  This expansion is then averaged over time to get the invasion rate.  By expanding

the growth rate to quadratic order, it is possible to see the effects of means (from the linear part

the Taylor expansion), and variances and covariances (from the quadratic terms of the Taylor

expansion) on the invasion rate.  Of special note here is the covariance between  Ej and F,

because it leads to the storage effect.  It arises in the quadratic expansion from the product of Ej

and F, which can be thought of as defining the interaction between Ej and F in determining rj. 



This interaction, in biological terms, measures buffered population growth, as discussed in the

text.

To perform a Taylor expansion, we must first choose fixed values, Ej
* and F*, of  Ej and

F, about which to perform the expansion.  The standard choice (Chesson 1994) is fixed values

with the property

(D.3)     ,( )* * ** *( , ) 0 ( i.e. ln (1 ) 0)j jE E F
j j jg E F s e Y e −= − + =

i.e. these are values at which the growth rate (D.1) would be zero. A natural choice for F* is  the

average over species of η because ηj is the value of F that gives species j zero growth in a

constant environment. However, it does not matter exactly what F* is so long as it is within

O(σ 2) of the constant-environment equilibrium F values of all species (Chesson 1994). Having

chosen F*, is chosen as the solution to equation (D.3). *
jE

We wish to understand the effects that Ej and F, and their interaction, have on the growth

rate rj . The first part of this process is to transform the variables Ej and F into variables Ej and Cj

representing their direct effects on rj, with the other variable held fixed respectively at F*

and , as follows:*
jE

(D.4) , { }*( , *), i.e. ln 1 j jE E F
j j j j jg E F s e Y e −⎡ ⎤= = − +⎣ ⎦E E

and 

(D.5) .{ }* **( , ), i.e. ln 1 j jE E F
j j j j jg E F s e Y e −⎡ ⎤= − = − − +

⎣ ⎦
C C

In these standard forms, Ej and Cj have the property that they are increasing functions

respectively of Ej and F, but are in the same units as rj.  We can thus use these variables to

partition out the direct effects of environment and competition on rj, leaving behind their

interaction. For example, averaging Ej over time gives the average effect of the environment on

the growth of species j, at a fixed level of the density dependent factor F, and is used below to



derive the fitness comparison measure , which then is a distinct element of the invasioniη η−

rate, separate from the storage effect.

To proceed, Chesson (1994) uses these standard variables, rather than Ej and F directly,

for the quadratic expansion of rj .  Averaging the resulting approximation over time then shows

that the invasion rate can be expressed in terms of three generic components, , ΔN , and ΔI ,ir′

which correspond to different coexistence mechanisms, as follows:

(D.6) , i ir r N I′= − Δ + Δ

(Chesson 1994, equation 52).  The quantity represents the effects of average fitness
ir′

differences and coexistence mechanisms that do not rely on fluctuations over time.  The term ΔN

is the fluctuation-dependent mechanism called relative nonlinearity (see Chesson 1994), and ΔI

is the storage effect. The relative nonlinearity term depends on differences between species in

the shape of as a function of F, and the variance of F.  Here those shape differences( , )j jg E F

depend on the differences between the Yj, but as we assume these differences to be O(σ 2), and

var(F) is also assumed to be O(σ 2), those shape differences are too small to be important in the

final result, and so ΔN can be ignored here.  

Because there is only one limiting factor,  F = C + aP, there is no fluctuation-

independent coexistence mechanism, and so the term, , consists only of average fitnessir′

differences. These fitness differences are written as ΔE in Chesson (1994).  Thus, (D.1) reduces

to the formula

(D.7) .ir E I= Δ + Δ

Next we show that ΔE can be approximated as β ( ).   The formal definition of ΔEiη η−

is



(D.8) , [ ] [ ]
n

i ir r
r i

E E q E
≠

Δ = −∑E E

where qir is the partial derivative of Ci  with respect to Cr. This particular quantity qir serves the

purpose of adjusting the comparisons between species due to differences in their sensitivities to

competition (here, read F).  For example, a less sensitive species is not harmed so easily by a

more sensitive species, leading to a low qir for that comparison. In more general models, qir also

has the effect of partitioning out fluctuation-independent mechanisms. For this model, table II of

Chesson (1994) gives qir = βi /βr(n – 1). Because the β’s are the same here, as explained above, 

qir = 1/(n – 1).  Hence

(D.9) ,
1[ ] [ ]

1

n

i r
r i

E E E
n ≠

Δ = −
− ∑E E

which is a comparison of mean invader and resident environmental responses. This quantity can

be evaluated to sufficient accuracy following the techniques of Chesson (1994).  First Ej is

expanded as a second order Taylor approximation about the value Ej
* to give

(D.10) ,1* * 2
2(1 )( ) (1 )( )j j j j js E E s s E E≈ − − + − −E

where “.” means with an O(σ 4) error.  Taking expected values gives 

(D.11) ,1* 2
2[ ] (1 )( [ ] ) (1 )j j jE s E E E s s σ≈ − − + −E

using the fact (Chesson 1994) that E[(Ej – Ej
*)2] = σ 2 + O(σ 4).  Because E[Ej] is the same for all

species, we see that 

(D.12) , ( )* *(1 ) iE s E EΔ ≈ − − −

where the bar on E* means the average over resident species.  The equilibrium relationship (D.3)

allows Yj and hence ηj to be written as a function of Ej
*. Differentiating this relationship shows

that dηj /dEj
* = – (1 – s)/(1 – s[1 – exp(Ej

*)]), which equals  – (1 – s)/β + O(σ 2).  By assumption,

the E*’s differ between species by O(σ 2), and so linearly approximating the E* difference (D.12)

in terms of η differences gives  



(D.13) .( )iE β η ηΔ ≈ −

Table 2 of the text follows the convention of (Chesson 2008) and lists ΔE in natural units (per

seed life time) as simply , i.e. (D.13) divided by β.  Note that is the average of the η’siη η− η

of resident species, not the average η of all species, and thus differs slightly from the nominal F*

value suggested here.  In the absence of environmental fluctuations, ΔE would be the only term

in , and only species with higher than average η could invade.  In fact, in that case, the growthri

rates of the species are ranked uniformly in magnitude according to the value of η, which directly

reflects Y, and thus only the species with largest η value can persist in the long run.  Its long-term

growth rate must be zero as a resident. All other species have negative long-term growth rates

and so are excluded.  

The second term in the formula (D.7) for , is the storage effect, ΔI.  To define it, weri

need a formal measure of the interaction between environment and competition (buffered

population growth discussed in the text), which for species j is the quantity γj given as  

(D.14) .
2

0j j

j
j j

γ
= =

∂
=
∂ ∂

E C
E C

The storage effect is defined in Chesson (1994, equation 23) as

(D.15) ,{ } { }cov( , ) cov( , )
n

i i
i i i ir r r r

r i

I qγ γ− −

≠

Δ = −∑E C E C

where the superscript {– i} specifies a calculation with species i in the invader state.  Table II of

Chesson (1994) gives the γ’s here as identical, and equal to 1– (1– s)-1.  Moreover, Chesson

(1994) shows that Ej can be linearly approximated as (1– s)(Ej – Ej
*), and Cj can be linearly

approximated as β(F – F*). (All these results from Chesson (1994) can be easily verified directly

from expressions (D.1), (D.4) and (D.5), above, with a little calculus and algebra.) It follows that 

(D.16) . 4cov( , ) (1 ) cov( , ) ( )s E F Oβ σ= − +E C



Recalling that qir = βi /βr(n – 1) = 1/(n – 1), it follows that  

(D.17) .    ( ) ( ){ } { }1 cov , cov ,
1

i i
r i

r i
I s E F E F

n
β − −

≠

⎧ ⎫⎡ ⎤Δ ≈ −⎨ ⎬⎣ ⎦−⎩ ⎭
∑

Since F = C + aP, only C is directly a function of the Ej’s, and the Ej’s are not correlated over

time, P(t) has zero covariance with Ej(t) — predator density does depend on past values of Ej,

but does not depend on the current one.  Thus, (D.13) reduces to 

(D.18) ,( ) ( ){ } { }1 cov , cov ,
1

i i
r i

r i

I s E C E C
n

β − −

≠

⎧ ⎫⎡ ⎤Δ ≈ −⎨ ⎬⎣ ⎦−⎩ ⎭
∑

which is reported in natural units in table 2 (i.e. divided by β following the convention of

Chesson 2008).  

Further simplification of this formula is possible by using expression (80) of Chesson

(1994), which shows that (D.18) can be written as 

(D.19) ,2 2( )(1 )I aβ γ ρ α σΔ ≈ − −

where α is 1– s (Table II of Chesson 1994 — it is just the linear coefficient in the expansion

(D.6) of Ej in terms of Ej), and here is not the attack rate, but the average over resident speciesa

of the quantity 

(D.20) .{ } /i
r ra E C −⎡ ⎤= ∂ ∂⎣ ⎦E

(The quantity ar arises because it defines the slope in the linear approximation of C{-i} in terms

of Er, and thus allows the covariance to be approximated.).  A little calculus shows that ar =

, and so (D.19) becomes [ ] /(1 )rGE N s−

(D.21)  .2(1 ) [ ] ( 1)rI s G E N nβ ρ σΔ ≈ − −∑
In the absence of predation, Chesson (1994, appendix II) shows that E[C] must be within O(σ 2)



of F*. However, .  Hence, as the number of species, n,[ ] [ ] [ ]r rr r
E C E G E N G N= ⋅ =∑ ∑

increases, total resident density cannot change greatly.
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