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Appendix A. Main algorithms for the four spatial point models and the steps for estimating 

parameters used in addressing the joint effects of habitat heterogeneity and dispersal 

limitation on the SARs. Calculations of AIC are also detailed. 

 

The algorithm of each model used in the present paper is described in detail in the book of 

Møller and Waagepetersen (2003). The steps for parameter estimation in each model are also 

explicitly illustrated in Waagepetersen and Guan (2007). For convenience, we summarized the 

main framework of the four models used in our study and the main steps of parameter 

estimation. For more details, please refer to the two literatures mentioned above. 

 

POISSON PROCESS 

A Poisson process X, defined in a two dimensional region , with intensity measure 2ℜ⊂S

μ  and intensity function ρ , satisfies for any bounded subregion  with SB ⊆ 0)( >Bμ . 

Meanwhile,  is a Poisson variable distributed with mean)(BN )(Bμ . Conditional on , 

the points in XB are i.i.d. with density proportional to

)(BN

)(uρ , which has the form of 
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where  and Bu∈ 0>α ,  denotes the )(:1 uz k k×1  vector of nonconstant environmental 

variables; k:1β  is a corresponding regression parameter.  

If )(uρ  is an constant λ for all Su∈ , the Poisson process is homogeneous or stationary. 

This is a model for ‘no interaction’ and ‘complete spatial randomness process. If )(uρ  is not 

a constant, but a function of environmental variables on location , we say that )(:1 uz k Su∈



this is an inhomogeneous Poisson process. It implies that there is no interaction between 

points, but the intensity could vary according to environmental factors. 

 

THOMAS PROCESS 

Since the independence properties of Poisson process are usually not realistic for real data, we 

choose two kinds of Cox processes to model the aggregation patterns. The Thomas point 

process X is a superposition of clusters Xc of offspring associated with mother points c in a 

stationary Poisson point process of intensity κ . Given c, the clusters Xc are independent 

Poisson processes with intensity functions 
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 is a probability density depending on a parameter δ >0 

determining the spread of offspring points around c.  still represents 

covariance between event density and environment at point u. X is a homogeneous Thomas 

process when . Otherwise, X is a heterogeneous Thomas process  

))(exp( :1:1
T
kk uz β

1):1 =T
k

Assume that  is bounded by some constant M, A cluster Xc may then be 

regarded as an independent thinning of a cluster Yc with intensity function 
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where the spatially varying thinning probability is . Using this thinning 

perspective, the intensity function of Thomas process X is 
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PARAMETER ESTIMATION 

For the above four processes, the intensity functions (A.1 and A.2) could also be written as: 

))(exp()( Tuzu βρ = ,                            (A.3) 

where  and ))(,1()( :1 uzuz k= ),( :10 kβββ = , )log(0 αβ = for Poisson process and 

)log(κ0 αβ = for Thomas process. Therefore, following Waagepetersen’s two-step approach 

(Waagepetersen and Guan 2007), we could maximize the following log-likelihood function 



based on the above intensity function A3 to obtain : β̂
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For Poisson process models, we can get all the parameters using maximum likelihood 

methods based on A.4. Other parameters κ̂  and  in Thomas process could be estimated 

by minimum contrast methods: 
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where rl, r, and c are user-specified constants, and K is the inhomogeneous K-function of X 

which is defined as 
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where is an edge-effect correction. Here, considering the bias of K increases with r, we 

choose rl = 0 and r = 100 meters. Following Diggle’s (2003) recommendation, we choose c as 

1/4. Border edge correction method (Ripley 1988) is used for faster compute. 

η,ue

μ̂ , the 

expected number of offspring of each mother point can be got by following κμ ˆ/ˆ M= . Finally 

 for Thomas process. κα ˆ/)exp(ˆ = β̂0

 

Akaike's Information criterion 

Akaike's information criterion (AIC) was used to measure the goodness of fit of an estimated 

statistical model. In the general case, AIC is 

)2 LkAIC ln(2−=  

where k is the number of parameters in the statistical model, and L is the maximized value of 

the likelihood function for the estimated model. A problem in the application of this criterion 

in our study is that estimation of our model parameters is not totally based on maximum 



likelihood method. Although likelihood based parameter estimation methods have been 

developed in recent years, problems of unstable and extremely time consuming restricted their 

application (Moller and Waagepetersen. 2004, Guan 2006). Fortunately, we can use the 

following estimation  in our current modeling framework (Webster and Mcbratney 1989): Â
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where n is the number of observations, k is the number of parameters estimated and R is the 

sum of residual squares. The quantity in the curly brackets is constant for a given set of data 

and so models can be compared by computing: kRnAIC 2)ln( += . 
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