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Appendix A. Analytical model for the DrD paradox (a linear version). 

Consider a region with a population of a single plant species and two habitats differing in 

their suitability for establishment of this plant. To assess the adaptive value of directed dispersal 

(DrD) towards the favorable habitat (where survival probability is higher), relatively to random 

dispersal (RD), we calculated the expected difference in fitness (i.e., the difference in the 

expected number of surviving offspring). We subtracted the total expected fitness of the RD 

strategy in both habitats from the total expected fitness of the DrD strategy in both habitats. The 

expected net fitness gain of the DrD over the RD strategy, ΔF, is thus 
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where FDrD and FRD are, respectively, the expected fitness of the DrD and RD strategies; 

subscripts 1 and 2 denote the favorable and unfavorable habitats. Equation (A.1) can be solved 

analytically by incorporating the fraction of seeds dispersed to each habitat by each strategy and 

calculating seed-survival probability given the resulting seed density in each habitat and the 

habitat basic properties. The model follows neutrality assumptions where all individuals in the 

population are identical in fecundity and dispersal strategy. Also the seeds are assumed to arrive 

at an unoccupied area, thus density effects respond to seed densities only.    

 

Calculating Fitness for the RD strategy:  

The proportion of seeds expected to arrive at each habitat under the RD strategy is equivalent to 

proportional area of each habitat. The number of seeds dispersed by this strategy (nRD) to the 

two habitats is thus  
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and 

112 )1( NHNHNnRD  ,        (A.3) 

where N is the total fecundity of all plants, assumed to be constant across individuals and 

habitats (hence N can be view as a product of number of plants and number of seeds per plant). 

H1 is the proportion of the favorable habitat from the total area. In the main text we assume, for 

simplicity, that the total area of the region (R) equals one spatial unit (e.g., one square 

kilometer); in this appendix, we develop the general case in which seed density in each habitat 

(δRD1 and δRD2) is calculated by dividing seed number at each habitat (equation A.2 and A.3) by 

the corresponding habitat area, thus  
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Thus, the density of dispersed seeds under the RD strategy is identical for the two habitats, as 

expected under random dispersal. 

The negative effect of seed density on seed survival can be expressed linearly as  

            (A.6)  

where ω is the proportion of surviving seeds, α and β are two distinct habitat properties affecting 

seed survival independently of the dispersal strategy. The parameter α determines habitat 

density-dependent suitability and the parameter β determines habitat density-independent 

suitability (see main text for details on both parameters). Equation (A.6) is restricted to the 

biologically relevant parameter range of 0<ω<1, which in turn limits the parameters in both 

habitats and for both dispersal strategies (RD and DrD) to the range 0<β<1 and 0<α<1/δ (i.e., 

0<α< R/N).The proportion of surviving seeds in each habitat is calculated by substituting 

equation (A.4) and equation (A.5) into equation (A.6), thus  
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To calculate the total fitness of the RD strategy, we multiply the survival probabilities 

(equations A.7 and A.8) by the corresponding number of seeds dispersed to each habitat 

(equations 2A and 3A), and sum the number of surviving seeds in the two habitats combined:  
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Calculating Fitness for the DrD strategy: 

The proportion of seeds expected to disperse to the favorable habitat under DrD strategy is 

Ω-folds higher than the proportion expected by the RD strategy (see text for details and further 

explanation of this parameter). Recalling that 1 ≤ Ω ≤ 1/H1, the number of seeds dispersed by 

plants exhibiting the DrD strategy (nDrD) to the two habitats is thus  
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and 
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For the DrD strategy, the resulting seed densities (δDrD1 and δDrD2) in the two habitats, calculated 

using the same procedure described for the RD strategy, are 
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Notice that as long as Ω is greater than 1 the term (1-H1Ω)/(1- H1) in equation (A.13) is always 

smaller than δDrD1  in equation (A.12). Thus, unlike the RD strategy in which seed densities in 

both habitats are equal, the DrD strategy (Ω>1) necessitates that seed densities in the favorable 

habitat will be higher than those in the unfavorable habitat.  

Applying the same linear density-dependent seed survival function equation (A.6) as for 

RD strategy above, we obtain 
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The total fitness of the DrD strategy can be calculated equivalently to equation (A.9) using 

equations (A.10), (A.11), (A.14) and (A.15):  
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Comparing the adaptive value of the two strategies and finding the optimal DrD level 

The net fitness gain of the DrD strategy in comparison to the RD strategy is calculated by 

solving equation (A.1), using values from equations (A.9) and (A.16), thus  
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Since N, α1, β1, α2, β2, R and H1 are set parameters, the net fitness gain is a second-order 

polynomial function of Ω with two following solutions (Ωa, Ωb) for DrD levels that lead to no 

fitness gain (ΔF= 0):  
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Because the first and second terms in equation (A.17) imply a negative coefficient of Ω2, 

this function should have one vertex (maximum) point, reflecting the highest possible fitness 

gain for the optimal value of DrD level. To determine this maximum point, we calculated the 

first and second derivative of equation (A.17) and obtained the value of Ω at ΔF´=0. Because the 

first derivative is  
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and the second derivative is always negative 
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the vertex point is the maximum point of that function. The value of Ω at the maximum of the 

net fitness gain function (i.e., the optimal DrD level Ω*) is  
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This value approaches an asymptote as the difference in habitat suitability increases from zero. 

When the density-dependent suitability of the unfavorable habitat deteriorates, (i.e., when α2 

increases to its upper limit R/N), the value of Ω* reaches the limit of 
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Thus, for β ratio=1, the limit of Ω* is 1/H1 and for high β-ratio the asymptote approaches the 
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value of Ω*= 1+R(1- H1)/H1. When the difference between habitats in their density-independent 

suitability is at its most extreme (i.e., when β1= 1 and β2= 0,) Ω* has the value  
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Yet, since Ω* is constrained to 1/H1, this asymptote may fall out of range for many possible 

value combinations of the parameters. For instance, when α ratio equals 1, this expression is 

always above the 1\H1 maximum value. 

  


