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Appendix A: Details on methods of spatial pattern analysis. 

The pair-correlation function g(r) is based on the distances between all pairs of points of 

a given point pattern. The estimator used for the pair correlation function is shown in 

equation A1. In essence, the univariate quantity λg(r) gives the expected density of 

neighbours in a ring of radius r and ring-width of dr around an “average” point of the 

pattern, where λ is the intensity of the pattern (i.e., number of points of the pattern 

divided by the area of the study plot). The pair-correlation function isolates specific 

distance classes which makes it especially suitable for exploratory data analysis 

(Wiegand and Moloney 2004, Perry et al. 2006, Illian et al. 2008). The bivariate pair-

correlation function for patterns comprising two types of points [i.e., dead (1) and 

surviving plants (2)] follows naturally; the bivariate quantity λ2g12(r) gives the expected 

density of type 2 neighbours in a ring of radius r (and ring-width dr) around an 

“average” type 1 individual, where λ2 is the intensity of the pattern of type 2 points.  

 

Test statistics 

For each year we know if a given plant was dead or alive. To identify the spatial 

structures in the process that assigned a label “mortality” to the plants the framework of 

“marked point patterns” is required (Goreaud and Pelissier 2003). The fundamental 

question is to find out if the process that distributed the labels was a random process. A 

suitable null model for this is “random labelling”. We used a Monte Carlo 

implementation of random labelling that involves random re-sampling of sets of n1 dead 



individuals from the total of (n1 + n2) dead and surviving individuals, i.e., we randomly 

shuffle the label “dead” among the plants.  

 While the concept of random labelling is easy and intuitive, the test statistics 

needed to test departures from random labelling are slightly more complex because they 

need to be adapted to the specific question asked. Conventional random labelling 

analyzes spatial structure of the two patterns of dead and surviving plants conditionally 

on the locations of dead and surviving plants (Goreaud and Pelissier 2003, De la Cruz et 

al. 2008). In this case random labelling implies that g1+2,1+2(r) = g11(r) = g22(r) = g12(r) = 

g21(r) where 1 symbolizes dead individuals, 2 surviving, and 1+2 symbolizes the joined 

pattern of dead and surviving individuals. This convenient property of random labelling 

allows for construction of different test statistics based on pair correlation functions. We 

use for this purpose the three specific test statistics g11(r), g12(r), g1,1+2 - g2,1+2, and g1+2,1. 

However, departures from random labelling may be influenced by a third pattern (e.g., 

De la Cruz et al. 2008; Biganzoli et al. 2009; Xu et al. 2009). Therefore we may also 

use test statistics that evaluate the probability of mortality in dependence on the distance 

from plants of a third pattern. Each of these test statistics we use evaluates a different 

biological effect of the spatial interactions that determine mortality (see below).   

 

 Test of influence of heterospecific plants on mortality with ph,1.⎯Our first 

hypothesis requires quantification of the impact of interspecific plants on mortality of a 

given focal species. We ask if, in the probability of mortality of plants, the focal species 

depends on the distance from surviving heterospecific plants. The appropriate null 

model for this question is again random labelling, but the test statistic needs to consider 

additionally the impact of heterospecific plants. The software Programita (Wiegand and 

Moloney 2004) offers an appropriate test statistic for such a situation (Biganzoli et al. 



2009; Xu et al. 2009) which was also independently proposed by De la Cruz et al. 

(2008). We have heterospecific plants (subscript h), dead plants of the focal species 

(subscript 1) and surviving plants of the focal species (subscript 2). The test statistic 

which estimates the probability of mortality of plants of the focal species in dependence 

on the distance r from heterospecific plants (subscript h) is given by  
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where λ1 +λ2) and λ1 are the intensities of plants of the focal species and of the dead 

plants of the focal species, respectively, and gh,1+2(r) and gh,1(r) are the bivariate pair 

correlation functions measuring the intensity normalized neighborhood density of 

surviving and dead focal plants (1+2) and dead focal plants (1), respectively, around 

heterospecific plants (h).  

 The expectation of this test statistic under random labelling is the overall 

probability of mortality, i.e., number of dead plants divided by number of plants. In the 

case of negative interactions exerted by plants of other species at distance r (i.e., 

competition) we expect a higher probability of mortality, i.e., ph,1(r) > λ1/(λ1 +λ2), 

whereas positive interactions would be indicated by a lower probability of mortality in 

the proximity of heterospecific plants, i.e., ph,1(r) < λ1/(λ1 +λ2).  

 Note that this test statistic is formally analogous to mark-connection functions 

(Getzin et al. 2008, Illian et al. 2008) because we normalize with the expectation under 

random labelling, thereby removing the effect of the spatial structure of the pre-

mortality pattern from the test statistic. The test statistic ph,i therefore shows the effects 

we are interested in (i.e., influence of heterospecific plants) much more clearly than by 



simply using the pair correlation function gh,1(r) or the L-function as done in De la Cruz 

et al. (2008).  

 Testing of hypothesis H1 requires not only to  show that proximity of 

heterospecific plants does not influence the probability of mortality but also to show 

that proximity of conspecific plants does influence the probability of mortality. 

Therefore we used the conspecific counterpart of the a test statistic ph,1(r), which is 

p1+2,1(r) where 1+2 symbolizes surviving and dead conspecifics, to test for effects of the 

proximity of heterospecific plants on the probability of mortality. We estimated the 

p1+2,1(r) analogously to Eq. A.1 as : 
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 Test of aggregation of dead plants with g11.⎯We used the test statistic g11(r) 

(i.e., univariate random labelling; Wiegand and Moloney 2004) primarily to test 

hypothesis H2, but also used it for hypotheses H1 and H4. Under scramble competition 

(H2), we expect that clumps of interacting seedlings should die together, thus dead 

seedlings should be spatially aggregated (e.g., Kenkel 1998). The test statistic g11(r) is 

especially tailored to detect clustering of dead individuals: if g11(r) shows a positive 

departure from the random labelling null model, dead plants are significantly clustered 

at scale r, conditionally on the joined pattern of dead and surviving individuals.  

 Test of attraction vs. segregation of dead and surviving plants.⎯ We used the 

test statistic g12(r) (Goreaud and Pelissier 2003) primarily to test hypothesis H2, but 

used it also for hypotheses H1 and H4. Under two-sided scramble competition (H2), 

negative interactions would be most pronounced in areas of higher seedling density, 



leading eventually to clumps of dead seedlings which are spatially segregated from 

surviving seedlings. Conversely, one-sided contest competition leads to a situation 

where suppressed “losers” are located near its superior rivals. Thus, in the language of 

point pattern analysis, dead plants will be “attracted” by surviving plants (Kenkel 1988). 

The test statistic g12(r) is tailored to detect correlation between dead and surviving trees 

(Goreaud and Pelissier 2003). Attraction (or segregation) between dead and surviving 

plants occurs if g12(r) shows positive (or negative) departures from the random labelling 

null model. 

 Test of density dependent mortality.⎯ We developed the third test statistic g1,1+2 

- g2,1+2 specifically to provide a direct test of hypothesis H3, i.e., to detect density 

dependent effects in mortality (Yu et al. 2009). This test statistic compares the density 

of dead and surviving plants (i.e., 1+2) around dead plants (i.e., pattern 1) with the 

density of dead and surviving plants (i.e., 1+2) around surviving plants (i.e., pattern 2). 

The expected value of this test statistic is zero under random labelling, but under density 

dependent mortality, dead plants would occur preferably in areas with high pre-

mortality densities, i.e., g1,1+2 > g2,1+2. Conversely, under positive density dependent 

mortality (i.e., facilitation), we expect surviving plants to have more neighbors (i.e., 

g1,1+2 < g2,1+2). Note that the test statistic g1,1+2 - g2,1+2 is in structure somewhat similar to 

the test statistic p1+2,1(r) because both evaluate effects of all seedlings on mortality. 

However, we could not derive a direct analytical relationship between the test statistics 

and used therefore both. 

 

Simulation envelopes 

We performed for each plot and year 999 Monte Carlo simulations of the random 

labelling null model to generate approximately 95% simulation envelopes. For each test 



statistic we used the 25th-lowest and 25th-highest value at a given scale r as simulation 

envelopes. However, the simulation envelopes cannot be interpreted as confidence 

intervals. Due to simultaneous inference (i.e., we test at several spatial scales, r, 

simultaneously), Type I error may occur if the value of the test statistic is close to a 

simulation envelope (i.e., the null model may be rejected even if it is true; Loosmore 

and Ford 2006). 

 To assess the overall fit of the random labelling null model for a given test 

statistic we used a Goodness-of-Fit (GoF) test with a test statistic ui which represents 

the total squared deviation between the observed pattern and the theoretical result across 

the distances of interest (in our case the scales 0-25cm). The ui were calculated for the 

observed data (i = 0) and for the data created by the i = 1,..999 simulations of the null 

model, and if the rank of u0 among all ui was larger than 950 (990), the data showed a 

significant departure from the null model with an error rate α = 0.05 (α = 0.01) (Diggle 

2003, Loosmore and Ford 2006). 

 

b) a) 

 

FIG. A1. One large plot (a) vs. several small plots (b). 

 

 



Combining the results of several point pattern analyses/subplots into one average test 

statistic 

Mapping a plant community for the purpose of point pattern analysis involves a trade-

off between one large plot and several smaller plots. One large plot has the advantage 

that edge effects are lower (i.e., there are less plants at the border of the plot which 

suffer from the influence of unknown plants outside the plot), but one larger plot may 

not sufficiently represent the typical conditions occurring at the study site.  

 Point pattern analysis can deal with replicate analysis of several replicate plots. 

In this case, the resulting test statistics of the individual replicate plots can be combined 

into average test statistics (Diggle 2003: page 123, Illian et al. 2008: page 263). Average 

test statistics are also an effective way of summarizing the results of several replicate 

plots. This is of particular interest if the number of points in each replicate plot is 

relatively low. In this case, the simulation envelopes of individual analyses would 

become wide, but combining the data of several replicate plots into average test 

statistics increases the sample size and thus narrows the simulation envelopes. Note that 

combining the results may even yield significant effects for the combined plots if the 

results for the individual plots are not significant. This is a consequence of the increased 

sample size. 

 The particular formula to combine results from several replicate plots depends 

on the estimators of the test statistics used. The grid based software Programita 

(Wiegand and Moloney 2004) allows analysis of study areas of irregular shape and is 

thus able to analyse several plots as shown in Fig. A1 directly, if they are placed 

sufficiently apart (i.e., distances among plots are larger than the largest scale r 

analyzed). Following the notation in Wiegand and Moloney (2004) (their equation 11), 



the numerical estimator of the O-ring statistic O12(r) = λ2 g12(r) implemented in 

Programita is calculated as: 
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where n1 is the number of points of pattern 1, R1,i
w(r) is the ring with radius r and width 

w centred in the ith point of pattern 1, Points2[X] counts the points of pattern 2 in a 

region X, and the operator Area[X] determines the area of the region X.  

 Equation  A.3 applies for both, the one large plot (Fig. A1a) and the several 

small plots (Fig. A1b). If several subplots are sufficiently separated in space as shown 

in Fig. A1b, no point pair appears in the estimator where points are from different 

subplots. In this case, the estimator Eq. A.3 can be rewritten, by simply grouping the 

contributions from the M different subplots:  
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which is equivalent to 

  

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++

=

∑∑

∑∑

==

==

))]([1(...))]([1(

))]([1(...))]([1(

)(ˆ
1

1

1
1

1
1

1
1
1

1
1

12

1
,1

1

1

1
,11

1

1
1

1
,1

1

1

1
,11

1

1
1

M

M
M

M

M
M

n

i

w
iM

Mn

i

w
i

n

i

w
iM

Mn

i

w
i

w

rR
nN

nrR
nN

n

rR
nN

nrR
nN

n

rO

AreaArea

PointsPoints 22

 (A.5) 



 

where ij is the ith point of pattern 1 and replicate j, n1
j is the number of points of pattern 

1 and analysis/replicate j, and N = ∑j n1
j is the total number of points of pattern 1 in all 

analyses. Note that the estimator Eq. A.5 sums up for each subplot the average 

intensity-weighted number of points of pattern 2 in rings with radius r and width w 

centred at point of pattern 1 and the intensity weighted area of these rings: 
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 The univariate estimators of O(r) are calculated in a manner analogous to the 

bivariate function by setting pattern 1 equal to pattern 2. In this case, however, the focal 

points of the circles are not counted:  

 

 ∑
=

−=
M

j

jnN
1

)1( .       (A.7) 

 

In practice, we analyzed the data for each subplot separately and performed the 

simulations of the random labelling null model separately within each subplot and 

combined the results of the subplots using the estimator Eq. A.5. Note that we applied 

Eq. A.5 for the observed data and the simulations of the null model. Alternatively, we 

could use the feature of Programita to analyze irregularly shaped study regions and 

analyze all subplots at once, thereby applying the random labelling null model over all 

subplots (e.g., Fig. A1b). However, we decided to treat each plot separately in the null 



model to better account for smaller differences between the subplots. This treatment is 

analogous to homogeneous vs. heterogeneous Poisson processes.  

 The estimator Eq. A.5 is not only an effective way of combining the results of 

several replicate plots, it can also be used to test in plant communities selectively for the 

impact of intraspecific interactions on mortality. Random labelling can be applied to the 

data on the survival/mortality of individual species or to plants of all species together. 

However, random labelling using the data of all four species implies that the estimator 

of the pair correlation function is composed of both intraspecific and interspecific point 

pairs. To study intraspecific effects selectively, the estimator needs to remove all 

interspecific point pairs. This results in the same estimator as using Eq. A.5 to combine 

the results of the individual analysis of the four species. In this case, the averages in Eq. 

A.6 would be interpreted as the average for individual species.  
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Table A1. Main hypothesis, test statistics, biological questions to be tested, and related figures. In all cases we use the random labelling null model but 

different test statistics to detect departures from random mortality. 

Test statistics Expectation   Biological questions to be tested Fig. 
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 ph,1(r) > λ1/(λ1 

+λ2) 

 

 

ph,1(r) < λ1/(λ1 +λ2) 

 

 

Test statistic above 

simulation envelopes 

 

Test statistic below 

simulation envelopes 

negative interactions will be exerted from heterospecific 

plants (= subscript h) or conspecific plants (subscript 1+2) 

at distance r (i.e., competition) causing a higher probability 

of mortality (=subscript 1) 

positive interactions would be indicated by a lower 

probability of mortality in the proximity of heterospecific 

plants (= subscript h) or conspecific plants (subscript 1+2) . 

Fig. 1 

g11(r) g1+2,1+2(r) Test statistic above 

simulation envelopes 

Dead individuals (= pattern 1) are aggregated at scale r, 

conditionally on the positions of dead and surviving individuals 

Fig. 2 

g12(r) g1+2,1+2(r) Test statistic below 

simulation envelopes 

Dead and surviving individuals are segregated, conditionally 

on the positions of dead and surviving individuals 

Fig. 2 

g1,1+2(r)- g2,1+2(r) 0 Test statistic above 

simulation envelopes 

Dead individuals are located in areas of higher initial seedlings 

density. Negative density dependence 

Fig. 2 

g1,1+2(r)- g2,1+2(r) 0 Test statistic below 

simulation envelopes 

Surviving individuals are located in areas of higher initial 

seedlings density. Positive density dependence 

Fig. 2 



 
Hypotheses Test Figures 

H1:intraspecific interactions are more 

important than interspecific interactions. 

Use random labelling with test statistics ph,1(r) and p1+2,1(r) where heterospecific plants ( = subscript 

h), dead plants of the focal species (= subscript 1) and surviving plants of the focal species  

(= subscript 2). The ph,1(r) and p1+2,1(r) estimate the probability of mortality of plants of the focal 

species in dependence on the distance r from heterospecific and conspecific plants, respectively. 

 

Fig 1 (A to H) 

vs. Fig 1 (I to P) 

 

 

H2: Competition should show 

characteristics of the two-sided scramble 

type (Kenkel 1988) 

Use random labelling with test statistics g11(r) and g12(r): 

• g11(r): dead individuals should be aggregated 

• g12(r): dead and surviving individuals should be segregated 

Fig 2 (A to P) 

H3: Positive density dependent effects on 

mortality during the earlier stage of 

seedling establishment, but negative effects 

when plants grow to maturity.  

Use random labelling with test statistic g1,1+2(r)- g2,1+2(r) 

• test for g1,1+2(r)- g2,1+2(r) < 0 in first years 

• test for g1,1+2(r)- g2,1+2(r) > 0 in later years 

Fig 2 (Q to X) 

H4: The simulated extreme rainfall event 

cause non-specific mortality of seedlings 

reducing intraspecific competition  

Compare results of hypothesis 1 for the two treatments.  Figs 1,2  

but Figs. F vs.  

FR 

 


