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APPENDIX A 

Mathematical Details of Spatial Integral Projection Models 

1. Traveling wave speed for a spatial integral projection model  

 Here we show how the asymptotic traveling wave speed can be computed for a 

linear spatial integral projection model for population spread in one-dimensional space. 

The calculations are very similar to Neubert and Caswell (2000); the main point of 

running through them is to identify the necessary properties of the kernel. We compute 

traveling wave speeds rigorously, but it remains a matter of conjecture and simulation (as 

in the Neubert-Caswell model) that growing populations do in fact spread asymptotically 

as traveling waves for well-behaved dispersal distributions.  

 We consider spatial IPM kernels of the form  

   2 2 1 1 2 1 2 1, , , , K x z x z K x x z z     (A.1) 

where z = trait, x = location, z1 = trait in previous time step, x1 = location in previous time 

step. The right-hand side of (A1) corresponds to the assumption of spatial homogeneity, 

specifically that the chance of moving from one location to another depends only on the 

distance between them. We also assume that movement is symmetric, i.e. that 
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   2 1 2 1, , , ,  K u z z K u z z . As in the Neubert-Caswell model, (A.1) allows the 

movement distribution to depend on the trait value z, but as explained below the trait-

specific movement distributions must have moment-generating functions that are all 

defined on some finite interval. In this paper z is individual size and the set of possible z 

values is a closed interval, but the calculations here apply to general individual-level state 

spaces (e.g., any compact metric space) as in Ellner and Rees (2006).  

 The population dynamics are then  

     2 2 2 1 2 1 1 1 1 1, , 1 , , , ,   n x z t K x x z z n x z t dx dz .   (A.2) 

Assume a traveling wave solution of (A.2) in one spatial dimension, 

   , , , n x z t u x ct z      (A.3) 

where c is the wave speed. Setting t=0 and substituting (A.3) into (A.2) gives 

     2 2 2 1 2 1 1 1 1 1, , , ,   u x c z K x x z z u x z dx dz .    (A.4) 

Possible speeds for a wave advancing to the right are found by positing solutions of the 

form  

   , syu y z w z e      (A.5) 

where y is location and w gives the trait distribution of individuals in the traveling wave 

(this basic approach goes back at least to papers by Fisher (1937) and Kolmogorov et al. 

(1937), where it was used for diffusion equations; see Mollison (1991)). Substituting 

(A.5) into (A.4),  

    2 1( )
2 2 1 2 1 1 1 1, , ( )    s x c sxw z e K x x z z w z e dx dz    (A.6) 
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Let 1 2 v x x , and using the symmetry property    2 1 2 1, , , , K v z z K v z z ,  
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K v z z w z e dvdz

H z z w z dz

   (A.7) 

where  

  2 1 2 1( , ) , ,  s
svH z z K v z z e dv .     (A.8) 

For each s, sH  is a kernel in the trait space whenever it exists. Its elements are values of 

the moment-generating function for the spatial distribution of type-z2 individuals at time 

t+1 produced by type- 1z individuals at time t. We assume that for s in some interval 

containing 0, sH  is defined and satisfies the assumptions of Ellner and Rees (2006) 

guaranteeing the existence of a unique dominant eigenvalue and corresponding positive 

stable trait distribution.  

 If we can now find a function w and a number s that satisfy equation (A.7), this is 

shows that there is a traveling wave with velocity c. To do this, let s  denote the 

dominant eigenvalue of sH , and sw  the corresponding eigenvector. The solution of (A.7) 

that we seek is obtained by setting sw w  and sc
se  , i.e. 

1
log( )sc

s
 . So long as the 

kernels satisfy the assumptions stated above, any such 0c  (i.e., any value of s such that 

1s  ) generates a traveling wave solution moving to the right at velocity c. Note that 

0H  is the kernel for total population size, so the total population size grows 
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asymptotically if and only if 0 1  , and in that case there will exist 0s   such that 

1s  , hence there will be traveling wave solutions.  

 A standard monotonicity argument (as in Kot et al. (1996)) shows that any model 

solution with the initial population limited to a finite spatial domain cannot spread faster 

than the slowest such wave speed, i.e.,  

0

1
* min log( )ss

c
s




    
     (A.9) 

is an upper bound on the rate of spread. What actually happens is, as in the Neubert-

Caswell model, still a matter of simulation and conjecture. The outcome universally 

observed is that a growing population converges to a wave travelling at rate *c , so that 

(A.9) is the asymptotic rate of spread. However, this result has been proved rigorously 

only for unstructured populations under some assumptions about the shape of the 

dispersal distribution (see Mollison 1991 for a review of these results).   

 For species such as plants with sessile adults and juvenile dispersal, the kernel 

will typically have the form  

          2 1 2 1 0 2 1, ,  
dK v z z K v Q z z v G z z    (A.10) 

where Kd is the dispersal kernel, and δ0 is the Dirac delta function, i.e. a probability 

distribution single spike of unit mass at v=0. The notation in (A.10) corresponds to the 

situation in our Carduus model. Seeds in the seed bank and established individuals 

cannot move and G represents their survival and growth, whereas offspring (generated by 

the fecundity kernel Q) disperse away from the parent. However, (A.10) would also apply 
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in other situations where some move, others don't, and all movers have the same dispersal 

pattern. For the kernel (A.10) we get  

 ( ) sH M s Q G      (A.11) 

where ( )M s is the moment generating function of the dispersal kernel. A practical 

consequence of equation (A.11) is that s  exists for any s such that the M(s) is finite so 

long as the nonspatial kernel Q+G satisfies the conditions for existence of a dominant 

eigenvalue given in Ellner and Rees (2006).  

 Equation A.11 thus is the core of our Carduus nutans SIPM, which we program in 

R as follows. Equation A.11 says that sH  is equal to the kernel  Q G  of the 

demographic (nonspatial) IPM, except that all demographic transition rates corresponding 

to seed production and dispersal are multiplied by ( )M s , the moment generating 

function of the dispersal kernel evaluated at s (see Neubert and Caswell 2000 for 

explanations of moment generating functions) .  Let “mat” be the iteration matrix for the 

demographic IPM (see Ellner and Rees (2006; appendix) for R code for generating 

iteration matrices for IPMs). Because it is important to separate rosette survival/growth 

from transitions that involve production and dispersal of new seeds, we keep those vital 

rates in separate columns of “mat” (see also the appendix of Jongejans et al. 2008). This 

means for, e.g., the SIPM100 that “mat” consists of 199 columns and rows: 1 for the 

seed bank, 99 for size classes of new seedlings, and 99 for the size classes of surviving 

rosettes. To perform the necessary multiplications by ( )M s we construct the matrix “Ms” 

with the code  

 Ms<-matrix(1,ncol=199,nrow=199); Ms[1:100,2:199]<-m 
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where  m equals ( )M s . Then the code "Hs<-Ms*mat" multiplies by ( )M s all the 

transitions involving dispersal (recall that "*" is element-by-element multiplication in R), 

which gives the iteration matrix for the kernel sH . Note that  the entries   

Ms[1:100,1] are not multiplied by m,  because these correspond to seeds in the seed 

bank, which either remain in the seed bank or else germinate to form a rosette, in both 

cases without any change in location.  

 

 

2. Sensitivity analysis of traveling wave speed 

  Because *c  is defined implicitly by equation (A.9) we need to use the following 

general result. Suppose ( ) min ( , )
x

Q f x   where x and θ are real and f is a smooth real-

valued function. Let x denote the value of x at which the minimum occurs, so that 

( , ) 0
f

x
x  





. Then  

( , ) ( , ) ( , )
xF f f f

f x x x
x


    

    
               

.   (A.12) 

Applying this to *c , with θ any parameter or component of the kernel, we get  

1

1

* 1
| *

c
s ss


  

 
     

     (A.13) 
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where *s  is the value of s at which the minimum occurs in (A.9). Because 1( )s  is the 

dominant eigenvalue of the kernel Hs, 1





can be computed by standard sensitivity 

analysis methods for integral projection models (Ellner and Rees 2006).  
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