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Appendix B: Coexistence equilibria and their stability

The purpose of this section is twofold. First, we calculate the equilibrium abundances of

the coexistence equilibria, i.e., those with all three species present, if the predator trait value x̄

is given, and we derive a univariate transcendental equation from which the actual equilibrium

values ˆ̄x can be computed. To this end, we introduce compound parameters and a proper scaling

for the predator trait that simplify the presentation considerably. It follows that existence and

location of these equilibria depend only on six compound parameters instead of the fourteen

parameters (Ki, ei, αi, τi, ri, θi, d, σ) of the full model. Second, we prove that for sufficiently

low heritabilities, trajectories always converge to an equilibrium.

We exclude the trivial case θ1 = θ2 when (1c) and (2) show that x̄ = θ1 = θ2 gives the only

equilibrium value. Because we can choose the origin of the predator trait arbitrary, we assume

θ = θ2 = −θ1 > 0. In addition, we suppose σ > 0.

Because (2) demonstrates that dW/dx̄ < 0 if x̄ < −θ and dW/dx̄ > 0 if x̄ > θ, admissible

equilibrium values x̄ always lie in the interval [−θ, θ]. However, it is possible that dW/dx̄ = 0

has no solution in [−θ, θ].

B.1. Determining the equilibria

To compute the equilibria of (1), we start be choosing an arbitrary but fixed value x̄. Then

the stationary points of the three-dimensional system (1a) and (1b) can be calculated explicitly.

As is easily checked with Mathematica, seven solutions are obtained. There are four solutions,

where the predator is missing at equilibrium, i.e., P = 0. At these, none of the preys, one prey,

or both are present. If a prey species is present, it is at carrying capacity.

There are two solutions, where one of the preys is absent and the predator coexists with the

other prey species. If prey 2 is absent, then the prey and predator abundances at equilibrium

are

N̂1 = exp

[
(x̄+ θ)2

2(σ2 + τ 2
1 )

]
d
√
σ2 + τ 2

1

e1α1τ1

, N̂2 = 0 , (B.1a)
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)
. (B.1b)



If x̄ = −θ, then the exponential term becomes unity; cf. (3). If prey 1 is absent, analogous

expressions for the equilibrium abundances are obtained.

To represent the final and most interesting solution, yielding equilibria at which all three

species coexist, we introduce the compound parameters
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Kieiαiτiσ

2
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, (B.2a)

ti = τi/σ , O = θ/σ , (B.2b)

where i = 1, 2, and the scaled trait variable

z = x̄/σ . (B.2c)

Thus, we are measuring the quantitative trait x in units of σ.

If we write

X1 = exp

[
(z +O)2

2(1 + t21)

]
and X2 = exp

[
(z −O)2

2(1 + t22)

]
, (B.3)

the equilibrium abundances become

N̂1 =
X1K1

β1

X1ρ1β1(1 + t22) +X2
2ρ2 −X2ρ2β2(1 + t22)

X2
1ρ1(1 + t21) +X2

2ρ2(1 + t22)
, (B.4a)

N̂2 =
X2K2

β2

X2ρ2β2(1 + t21) +X2
1ρ1 −X1ρ1β1(1 + t21)

X2
1ρ1(1 + t21) +X2

2ρ2(1 + t22)
, (B.4b)

P̂ =
ρ1ρ2X1X2

dα1α2β1β2t1t2
√

1 + t21
√

1 + t22

X1β2(1 + t22) +X2β1(1 + t21)−X1X2

X2
1ρ1(1 + t21) +X2

2ρ2(1 + t22)
. (B.4c)

Substituting (B.4) into the differential equation (1c) for the evolution of the mean pheno-

type, we find that the equilibrium values ẑ are the zeros of the transcendental function

ψ(z) = ρf(β1, t1, t2, O, z) + f(β2, t2, t1,−O, z) , (B.5)

where

ρ = ρ1/ρ2 (B.6)

and

f(β, t1, t2, O, z) = X2
1 (O − z)−X1β[O(2 + t21 + t22)− z(t21 − t22)] . (B.7)

Thus, we have reduced the problem of finding coexistence equilibria of (1) to solving the uni-

variate equation (B.5). Analytically, this is impossible, but numerically it is easy. A solution ẑ
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of (B.5) gives rise to an equilibrium of the full model (1) if and only if the resulting values N1,

N2, and P , as determined from (B.4), are all positive.

It is remarkable that the equilibrium values ˆ̄x, hence the number of coexistence equilibria,

can be determined from the six compound parameters β1, β2, t1, t2, ρ, and O instead of the 13

parameters of the full model (Ki, ei, αi, τi, ri, d, θ, σ).

For completeness, we note that

ψ(z) =
σ

d
[ρX1(1 + t22) +X2(1 + t21)]

dW

dx̄
(x̄) . (B.8)

This confirms that ψ and dW
dx̄

have the same zeros, but shows that the curvature of W cannot

be simply obtained by differentiating ψ.

A simple sufficient condition ensuring that at least one solution x̄ ∈ (−θ, θ) exists is

max
{
β1(1 + t21), β2(1 + t22)

}
≤ 1 . (B.9)

Then ψ(−O) > 0 and ψ(O) < 0. Hence, there exists an odd number of zeros in (−O,O).

More generally, the condition A1A2 > 0 ensures the existence of at least one equilibrium

value z. Here,

A1 = ρβ1(1 + t22) exp

[
2O2

1 + t21

]
+ 1− β2(1 + t22) , A2 = β2(1 + t21) exp

[
2O2

1 + t22

]
+ ρ(1− β1(1 + t21)) .

(B.10)

The assertion follows from ψ(O) = −2OA1 and ψ(−O) = 2OA2. Plots suggest that A1A2 > 0

is actually necessary and sufficient. Clearly, A1A2 > 0 gives explicit bounds for, e.g., ρ, but this

requires to consider several cases. The condition A1A2 > 0 is violated if β2 � β1ρ or β2 � β1ρ,

i.e., if there is great asymmetry.

Finally, we show that alternative equilibria with all species present arise only when there is

sufficient resource differentiation. Let ψ be as above and assume t1 = t2 = t and O = 0. Then

we have

ψ′(z) = − exp

(
z2

1 + t2

)
(1 + ρ)

1 + t2 + 2z2

1 + t2
< 0 (B.11)

for every z ∈ R. By continuity, ψ′(z) < 0 for every z ∈ R holds if O is sufficiently small and also

if t1 ≈ t2. (One can calculate the first-order perturbation terms but they are a bit complicated.)

Therefore, ψ is strictly monotone on [−O,O], hence there can exist at most one equilibrium at

which all species coexist.
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B.2. Fitness minima and disruptive selection

We prove that there is selection for increased variation at equilibria at which W is mini-

mized. This shows that such equilibria are indeed under disruptive selection. Hence, the trait

variance should evolve to higher values if the whole distribution of genetic effects were allowed

to evolve. If τ1 = τ2, a simple explicit criterion is obtained for disruptive selection to act.

To demonstrate our assertion, we proceed as follows. We calculate the first derivative of

W with respect to σ2, transform the resulting expression to the compound variables (B.2), and

evaluate at equilibrium, i.e., we substitute (B.4) and ρ1 = ρρ2, where ρ is calculated from (B.5).

Now employ t1 = t2 = t to obtain

∂W

∂σ2

∣∣∣∣
z=ẑ

=
d(O2 − t2 − ẑ2 − 1)

2σ2(1 + t2)2
, (B.12)

where ẑ is the equilibrium trait value, i.e., a solution of (B.5). (If τ1 6= τ2, the resulting expression

is (proportional to) a complicated cubic polynomial in ẑ.) An analogous procedure shows that

∂2W

∂x̄2

∣∣∣∣
z=ẑ

=
d(O2 − t2 − ẑ2 − 1)

σ2(1 + t2)2
, (B.13)

i.e., these derivatives always differ by a factor of two (this is also true if τ1 6= τ2). Thus, at

fitness minima (with respect to x̄) there is selection for increased variance (and vice versa).

In terms of the original coordinates, we obtain that there is selection for increased variance

at an equilibrium if and only if

ˆ̄x
2
< θ2 − τ 2 − σ2 , (B.14)

which necessarily requires θ2 > τ 2 + σ2 or, equivalently, O2 > t2 + 1. As a consequence, if there

are multiple equilibria, then equilibria close to the boundary (so that the predator specializes

on one of the preys) are under stabilizing selection, whereas equilibria closer to x̄ = 0 may be

under disruptive selection. It seems difficult to obtain simple conditions for ESS or CSS.

B.3. Convergence

To show that solutions converge to equilibria whenever σ2
G is sufficient small, we first ob-

serve that if σ2
G = 0, then x̄ remains stationary and the dynamics of (1a)-(1b) correspond to the

classical Lotka-Volterra dynamics of two prey species with a common predator. Takeuchi and
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Adachi (1983) have studied these dynamics in great detail and have shown (cf. Theorem 6 with

α = β = 0) that the solutions of these equations converge to a unique stable equilibrium when-

ever all species are initially present. This globally stable equilibrium is given by (B.4) whenever

it is feasible (i.e. N̂1, N2 and P̂ are positive), otherwise it is given by the boundary equilibrium

(N1, N2, P ) = (N̂1, 0, P̂1), (N1, N2, P ) = (0, N̂2, P̂2), or (N1, N2, P ) = (K1, K2, 0) which is locally

asymptotically stable. Let (N̂1(x̄), N̂2(x̄), P̂ (x̄)) denote this globally stable equilibrium for (1a)-

(1b) as a function of x̄. Without loss of generality, we assume that θ1 = −θ and θ2 = −θ2. The

graph of this function, E = {(N̂1(x̄), N̂2(x̄), P̂ (x̄), x̄) : x̄ ∈ [−θ, θ]}, defines a piece-wise smooth,

one dimensional manifold homeomorphic to [−θ, θ] that is a global attractor for the dynamics

of (1a)-(1b) when σ2
G = 0, i.e., all solutions with all species initially present converge to E .

Geometric singular perturbation theory (see, e.g., Hek (2010) for a nice review) implies that if

each of the equilibria in E are linearly stable for the corresponding ecological dynamics, then for

σ2
G > 0 sufficiently small, there is a one dimensional manifold Ẽ homeomorphic to [−θ, θ] “near”

E that is a global attractor for the dynamics of (1a)-(1b). Moreover for σ2 > 0 sufficiently small,

solutions with all species initially present are asymptotically in “phase” with solutions lying in

Ẽ , and the dynamics on Ẽ for σ2
G > 0 are topological conjugate to the dynamics of

dx̄

dt
=
dW

dx̄
(x̄, N̂1(x̄), N̂2(x̄))

on the interval [−θ, θ]. Hence, for σ2
G > 0 sufficiently small, solutions with all species initially

present converge to equilibria of the form (x̄, N1, N2, P ) = (ˆ̄x, N̂1(x̄), N̂2(x̄)) where ˆ̄x satisfies

dW
dx̄

(ˆ̄x, N̂1(x̄), N̂2(x̄)) = 0. We conclude by noting that for these Lotka-Volterra equations, the

assumption that each of the equilibria in E are linearly stable for the corresponding ecological

dynamics is satisfied whenever all points of E are feasible (i.e. N̂i(x̄) > 0 and P̂ (x̄) > 0 for

all x̄ ∈ [−θ, θ])). However, even when this restriction is violated, numerical simulations suggest

that dynamics converge to an equilibrium for σ2 > 0 sufficiently small.
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