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Appendix A: Conditions for persistence of predator and prey species.

The purpose of this appendix is develop conditions for persistence of predator and the

prey species. We begin with conditions for persistence of the predator which turn out to be

surprisingly subtle due to the evolutionary dynamics. Under the assumption that the predator

persists, we develop a general persistence condition for the prey.

A.1. Conditions for predator persistence

When there is only a single prey species present, eiKiαiτi

d
√
σ2+τ2i

> 1 is necessary for the per-

sistence of the predator as discussed in the main text. When both prey species are present,

a characterization of persistence of the predator becomes more subtle. Predator persistence

depends on whether the predator can invade the equilibrium at which both prey are at their

carrying capacity: (N1, N2) = (K1, K2). At (K1, K2), the phenotype dynamics of the predator

equilibrate at the local extrema of the fitness function W (x̄, K1, K2) =
∑

i eiāi(x̄)Ki− d. There

are two cases to consider: W (x̄, K1, K2) has a unique maximum or there exist two maxima sep-

arated by a minimum. We say that the predator persists in the sense of permanence (Hofbauer

and Sigmund 1998) if there exists η > 0 such that P (t) ≥ η whenever t is sufficiently large and

min{N1(0), N2(0), P (0)} > 0.

When there is a unique maximum at x̄ = ˆ̄x, the predator persists in the sense of permanence

if W (ˆ̄x,K1, K2) > 0. Alternatively, if W (ˆ̄x,K1, K2) < 0, then the predator can go extinct for all

initial values of x̄. Since W (ˆ̄x,K1, K2) is greater than W (θ1, K1, 0) and W (θ2, 0, K2), persistence

on a single prey is sufficient for predator persistence on both prey. In the case of three extrema,

this no longer need hold.

Assume there are three extrema for W (x̄, K1, K2). Let ˆ̄x1 < ˆ̄x2 be the local maxima and

ˆ̄xmin ∈ (ˆ̄x1, ˆ̄x2) be the local minimum. Generically, there are four scenarios to consider. First, if

W (ˆ̄xi, K1, K2) < 0 for i = 1, 2, then the predator can go extinct for all initial values of x̄. Second,

if W (ˆ̄xmin, K1, K2) > 0, then W (ˆ̄xi, K1, K2) > 0 for i = 1, 2 and the predator persists in the

sense of permanence. Third, ifW (ˆ̄x1, K1, K2)W (ˆ̄x2, K1, K2) < 0, then the invading predator goes

extinct when its initial mean phenotype is near the ˆ̄xi at which W < 0 or its invasion succeeds

(possibly resulting in persistence) if its mean phenotype is near the other local maximizer of



fitness. Hence, in this third scenario, the predator at best, exhibits persistence that is contingent

on initial conditions. Finally, if W (ˆ̄xi, K1, K2) > 0 for i = 1, 2 and W (ˆ̄xmin, K1, K2) < 0, then

the predator can invade for x̄ 6= ˆ̄xmin. However, the predator does not persist in the sense of

permanence as there is at least a one-dimensional set of initial conditions with P (0) > 0, N1(0) >

0, and N2(0) > 0 that lead to predator extinction.

A.2 Conditions for prey coexistence

Here, we develop the general prey coexistence criterion under the assumption that the

predator can persist in the presence of one or both prey species. We begin by examining the

invasion rates of the missing prey species at the equilibria determined by a predator-prey pair. If

prey species j is the missing resource species, then its invasion rate at the predator-prey i(6= j)

equilibrium, (3), is

rj − āj(θi)
ri

āi(θi)

(
1− N̂i

Ki

)
,

where N̂i = d
eiāi(θi)

. Hence, prey species j can invade provided that

rj
āj(θi)

>
ri

āi(θi)

(
1− N̂i

Ki

)
, j 6= i. (A.1)

When (A.1) holds for both prey species, i.e., the prey species exhibit mutual invasability, all

three species coexist in the sense of permanence (Hofbauer and Sigmund 1998). When the

opposite inequality of (A.1) holds, the equilibrium supporting only prey species i is stable and

prey species j can be displaced. Since 0 < 1− N̂i

Ki
< 1 and āj(θi) ≤ āj(θj), (A.1) always hold for

the species j such that
rj

āj(θj)
> ri

āi(θi)
, i.e., the superior apparent competitor. When τ1 = τ2 (as

assumed in the main text), this condition for superiority simplifies to rj/aj > ri/ai.

The fact that the sign of the invasion rate of the missing prey species determines stability

follows from the block diagonal form of the derivative matrix at these boundary equilibria. For

example, if we use the coordinate system (N1, P, x,N2) and linearize the system of differential

equations at the equilibrium (N1, P, x,N2) = (N̂1, P̂1, θ1, 0), we get a block diagonal matrix of

the form (
A B

0 c

)

2



where A is a 3 × 3 matrix corresponding to linearizing the N1-P -x subsystem, B is a 3 × 1

matrix, and c is the per-capita growth rate of prey 2 evaluated at this equilibrium. Since the

eigenvalues of A have negative real parts (i.e., the boundary equilibrium is stable in the N1-P -x

subsystem), it is the sign of c that determines whether the equilibrium is stable or not in the

full state space.

These conditions for prey coexistence imply permanence for all species (i.e., there exists η >

0 such that min{N1(t), N2(t), P (t)} ≥ η whenever t is sufficiently large and min{N1(0), N2(0), P (0)} >

0) if the predator is permanent as discussed in the previous section. A proof of this statement fol-

lows from (i) the observation that all solutions on the boundary converge to equilibria, (ii) there

are no heteroclinic cycles amongst these equilibria, (iii) the Stable Manifold Theorem (Perko

1996), and (iv) the topological characterization of permanence (Hofbauer and So 1989; Garay

1989).
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