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Definitions  
αi = alpha diversity or species richness of the ith quadrat, a non-zero integer   
ᾱ = mean species richness of the 4 quadrats, a real non-zero number, when the assumption of  

constant richness is imposed, this is a positive integer.  
4ᾱ = total number of "occupancy units" or filled cells in the species-by-site matrix.  
γ = gamma diversity or total unique species summed over all 4 quadrats, a positive integer.  
xi = number of species occurring in i quadrats where i = 1, 2, 3 or 4.  This quantity is referred to  

as the occupancy level.  
x = [x1, x2, x3, x4] = the occupancy frequency distribution, each element of this vector represents  

the number of species at a given occupancy level.  
a = the number of shared species in a single pairwise comparison between quadrats, an integer (a  

in Legendre and Legendre 1998, p254).  Although a is not a constant, we represented it as a  
non-italicized symbol for visual clarity in our expressions. In the text, a represents the vector  
of a values.  

b = c = ᾱ – a = the number of unique species in a single quadrat resulting from a pairwise  
comparison with another quadrat, an integer (b and c in Legendre and Legendre 1998, p254).   
The number of unique species in each quadrat is equal under the constraint that αi = ᾱ.   

    
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kkJ ααT = average turnover as defined by the Jaccard index of  

dissimilarity when αi = ᾱ; ak is the number of shared species in the kth unique pairwise  
comparison in the system of four quadrats, a real number between 0 and 1.  

z = log2(γ /ᾱ) /2 = slope of the species-area relationship for a system of four equal area quadrats,  
a real number between 0 and 1.  
  
Bold lowercase letters represent vectors throughout this treatment.  
  
System equations  
x1 + x2 + x3 + x4 = γ          (B.1)  
  
x1 + 2x2 + 3x3 + 4x4 = 4ᾱ         (B.2)  
  
ᾱ ≤ γ ≤ 4ᾱ           (B.3)  
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Summary of findings  
  
Table B1. The equations that define occupancy, average turnover, and the matching/mismatching  
components as a function of ᾱ and γ. Note that in our framework b = c.  
 constraints x = [x1, x2, x3, x4] 

JT * a* b, c* 

Minimum JT       

 x4max – x4int = 0 [γ – x4max, 0, 0, x4max] 2(ᾱ – x4max) /(2ᾱ – x4max) x4max ᾱ - x4max 

 x4max – x4int = 1/3 [γ – x4int – 1, 1, 0, x4int] (1/6)∙{2(ᾱ – x4int – 1) / (2ᾱ – x4int –1) + 
5[2(ᾱ – x4int)  / (2ᾱ – x4int)]} 

x4int + 1 
OR 
x4int 

ᾱ – x4int – 1 
OR 

ᾱ – x4int 
 x4max – x4int = 2/3 [γ – x4int – 1, 0, 1, x4int] (1/2)∙[2(ᾱ – x4int – 1) / (2ᾱ – x4int – 1) + 

2(ᾱ – x4int) / (2ᾱ – x4int)] 
x4int + 1 

OR 
x4int 

ᾱ – x4int – 1 
OR 

ᾱ – x4int 

Maximum JT       
 4ᾱ/2 ≤ γ ≤ 4ᾱ [2γ – 4ᾱ, 4ᾱ – γ, 0, 0] (2ᾱ + γ) / (4ᾱ + γ/2) 2ᾱ/3 – γ/6 ᾱ/3 + γ/6 
 4ᾱ/3 ≤ γ < 4ᾱ/2 [0, 3γ – 4ᾱ, 4ᾱ – 2γ, 0] (γ – 2ᾱ/3) / (γ/2 + 2ᾱ/3) 4ᾱ/3 – γ/2 γ/2 – ᾱ/3 
 ᾱ ≤ γ < 4ᾱ/3 [0, 0, 4γ – 4ᾱ, 4ᾱ – 3γ] 2(γ – ᾱ) / γ 2ᾱ – γ γ – ᾱ 

* When maximizing JT , the formulas in these columns are not applicable unless the formula for  
the matching component, a, yields an integer.    
  
Table B2. Average turnover as a function of the slope of the species-area relationship, z (this is  
Table 1 in the main text).  
 Domain of z 

JT  

Minimize JT    
  1 ,0  )12/()12( 122  zz  
Maximize JT    
  1 ,5.0  )22/()12( 2212   zz  
  5.0 ,2/)3/4(log2  )2/()2( 3

212
3
22  zz  

  2/)3/4(log ,0 2  z2122   
  

In the following treatment, there are two primary sections which approach the respective  
problems of minimizing and maximizing average turnover.  In both of these two sections, we  
will first define the occupancy distributions (x), and then we will define average turnover under  
the additional assumption of constant richness.  We will provide the matching/mismatching  
components (a, b, and c) that Legendre and Legendre (1998, p254) have used to mathematically  
express many different turnover indices for presence-absence data. Lastly in both sections, we  
derive an expression of average turnover as a function of the slope of the species-area  
relationship (z).   
  
1 - Minimizing Pairwise Turnover  
1.1 - Occupancy distributions that minimize turnover for a given ᾱ and γ  
  
Turnover will be lowest when the number of species with maximal occupancy is greatest (i.e.,  
when x4 is maximized). If we imagine assigning x4 species to that maximal level of occupancy,  
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then the number of occupancy units remaining to be assigned to x1, x2, and x3 must be at least as  
great as the number of species remaining to be assigned:   
  
4ᾱ – 4x4 ≥ γ – x4.           (B.4) 
  
Rewritten, the maximal value of x4 must satisfy the equation  
  
x4 ≤ (4ᾱ – γ)/3            (B.5)  
  
Therefore, we can define a hypothetical maximum value for x4, which we will call x4max:  
  
x4max = (4ᾱ – γ)/3          (B.6)  
   
Because x4 is constrained to be an integer and x4max is not necessarily an integer, we must also  
define the actual largest integer that x4 can be, we will call this value x4int:   
  
x4int =  3/)4(]3/)4[(floor γαγα         (B.7)  
  
Given that the denominator in x4max is equal to three, there are only three possible values of the  
difference between x4max and x4int: 0, 1/3, or 2/3.  In the following we will treat each of these three  
possibilities individually because they lead to different occupancy distributions, x.  
  
Theorem 1.1.1   
If x4max – x4int = 0 then x = [γ – x4max, 0, 0, x4max]  
  
Proof   
We will begin by solving for the largest possible size of x3.  Following the same line of reasoning  
that was used to derive (B.4) we see that:  
  
4ᾱ – 4x4max – 3x3  ≥ γ – x4max – x3         (B.8)  
  
Which simplifies to:   
  
(4ᾱ – γ – 3x4max)/2 ≥ x3         (B.9)  
  
And note that x4max  = (4ᾱ – γ)/3.  Therefore, (B.9) simplifies to 0 ≥ x3, which demonstrates that  
the largest x3 can be is zero.  Now we will solve for the largest value of x2:  
  
4ᾱ – 4x4max –2x2  ≥ γ – x4max – x2         (B.10)  
  
Which simplifies to:  
  
4ᾱ – γ – 3x4max ≥ x2          (B.11)  
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And again because x4max = (4ᾱ – γ)/3, it follows that 0 ≥ x2. Any remaining species in the  
assemblage must be singletons – x1 species.  Specifically there will be γ – x4max species that occur  
in only one site given that there are γ species total and x4max species that occur in all four sites.  

■ 
Theorem 1.1.2 
If x4max – x4int = 1/3 then x = [γ – x4int – 1, 1, 0, x4int].  
  
Proof  
We will start by examining how large x3 can be.  Because of the necessary constraint that the  
unassigned occupancies must be equal to or greater than the remaining number of species to be  
assigned we arrive at an inequality that is similar to (B.9) only in this case we must exchange  
x4max with x4int:  
  
(4ᾱ – γ – 3x4int)/2 ≥ x3          (B.12)  
  
Note that 4ᾱ – γ = 3x4max therefore (B.12) simplifies to:  
  
3(x4max – x4int)/2 ≥ x3          (B.13)  
  
As stated above x4max – x4int = 1/3, after substitution of 1/3 into (B.13) it is clear that 1/2 ≥ x3.    
  
Therefore because x3 must be an integer, the largest x3 can be is zero.    
  
Now we will solve for the largest x2,  
  
4ᾱ – 4x4int – 3x3max – 2x2 ≥ γ – x4int – x3max – x2      (B.14)  
  
Which simplifies to:  
  
4ᾱ – γ – 3x4int – 2x3max  ≥ x2         (B.15)  
  
3(x4max – x4int) – 2x3max  ≥ x2         (B.16)  
  
3(1/3) – 2(0)  ≥ x2          (B.17)  
  
1 ≥ x2            (B.18)  
  
The remaining unassigned species must be singletons, there will be γ – x4int – 1 species that occur  
in only one site given that there are γ species total, x4int species that occur in four sites, and one  
species that occurs in two sites.  

■  
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Theorem 1.1.3  
If x4max – x4int = 2/3 then x = [γ – x4int – 1, 0, 1, x4int].   
  
Proof  
First note that solving for maximum x3 leads to (B.12) and (B.13), therefore we will begin by  
substituting 2/3 for  x4max – x4int into (B.13):    
  
3(2/3) / 2 ≥ x3           (B.19)  
  
1 ≥ x3            (B.20)  
  
Therefore, at most one species can occur in three of the sites and we can define x3max = 1.   
  
Now we will solve for the largest x2, and we note that this leads to (B.14– 16) with the only  
exception that x3max  = 1 and x4max – x4int = 2/3 in this case, therefore we will begin by substituting  
these values into (B.16):  
  
3(2/3) – 2(1)  ≥ x2          (B.21)  
  
0 ≥ x2            (B.22)  
  
The remaining unassigned species must be singletons, there will be γ – x4int – 1 species that occur  
in only one site given that there are γ species total, x4int species that occur in four sites, and one  
species that occurs in three sites.  

■  
  
1.2 - Minimum average turnover and the matching/mismatching components as a function of ᾱ  
and γ  
  
Now we will add an additional constraint that richness does not vary between quadrats: αi = ᾱ  
which is necessary to derive expressions for the average turnover ( JT ) as defined by the Jaccard  
index of dissimilarity for each of the three cases given in the preceding section.    
  
Theorem 1.2.1  
If x = [γ – x4max, 0, 0, x4max] then   

JT = 2(ᾱ – x4max) / (2ᾱ – x4max),   
a = x4max, and  
b = c = ᾱ – x4max.  
  
Proof  
There are six possible unique pairwise calculations of turnover in an assemblage of 4 quadrats.  
We will refer to each of the six comparisons as TJk for the kth comparison.   
  
TJk = # of unique species in two quadrats / #of total species between the two quadrats  
  
     = 2(ᾱ – a) / (2ᾱ – a), where a is the number of species shared between the two quadrats  
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In the x under consideration, any pairwise comparisons will result in x4max species shared.  
Therefore, each of the six comparisons will result in identical values of TJk, which indicates that  

JT  = TJk.  
  
The number of species in the first site is ᾱ and the number of new species gained by also  
considering the second site is simply the richness of the second site, ᾱ, minus the number of  
shared species, x4max: ᾱ – x4max.  Therefore:  
  





6

1
)6/1(

k

JkJ TT = Tk = 2(ᾱ – x4max) / [ᾱ + (ᾱ – x4max)]  = 2(ᾱ – x4max)  / (2ᾱ – x4max).    

With respect to the matching/mismatching components, it should be clear that, a = x4max and  
b = c = ᾱ – x4max.  

■  
  
Theorem 1.2.2  
If x = [γ – x4int – 1, 1, 0, x4int] then   

JT = (1/6){2(ᾱ – x4int – 1) / (2ᾱ – x4int –1) + 5[2(ᾱ – x4int)  / (2ᾱ – x4int)]},   
a = [x4int + 1, x4int, x4int, x4int, x4int, x4int], and   
b = c = [ᾱ – x4int – 1, ᾱ – x4int, ᾱ – x4int, ᾱ – x4int, ᾱ – x4int, ᾱ – x4int].  
  
Proof  
In this case the six pairwise calculations of TJk will result in one of two values depending on  
whether or not a given pair of quadrats share more than x4int species.  There will only be a single  
pair of quadrats that share x4int + 1 species, this pair will have a total of ᾱ + ᾱ – (x4int + 1) species,  
therefore:  
  
TJk  = 2[ᾱ – (x4int + 1)] / [2ᾱ  – (x4int + 1)] for k = 1  
  
In this comparison, a = x4int + 1 and b = c = ᾱ – x4int – 1.  
  
The remaining five pairs will only share x4int species and will have a combined total of ᾱ + ᾱ –  
x4int species.  
  
TJk = 2(ᾱ – x4int) / (2ᾱ  – x4int) for k = 2, 3, 4, 5, 6  
  
In these five comparisons, a = x4int and b = c = ᾱ – x4int.  
  





6

1
)6/1(

k

JkJ TT = (1/6) 2(ᾱ – x4int – 1) / (2ᾱ  – x4int –1)] + (5/6) 2(ᾱ – x4int) / (2ᾱ  – x4int)  

  
JT = (1/6){2(ᾱ – x4int – 1) / (2ᾱ – x4int –1) + 5[2(ᾱ – x4int)  / (2ᾱ – x4int)]}  

■  
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Theorem 1.2.3   
If x = [γ – x4int – 1, 0, 1, x4int] then  

JT  = (1/2)[2(ᾱ – x4int – 1) / (2ᾱ – x4int – 1) + 2(ᾱ – x4int)  / (2ᾱ – x4int)],   
a = [x4int+1, x4int+1, x4int+1, x4int, x4int, x4int], and   
b = c = [ᾱ – x4int –1, ᾱ – x4int –1, ᾱ – x4int –1, ᾱ – x4int, ᾱ – x4int, ᾱ – x4int].  
  
Proof  
Again there are only two unique values of TJk depending on whether the pair of quadrats  
considered shares x4int species (three comparisons) or x4int + 1 species (three comparisons). In the  
latter case there will be a total of ᾱ + ᾱ – (x4int +1) species:  
  
TJk =  2[ᾱ – (x4int + 1)] / [2ᾱ – (x4int + 1)] for k = 1, 2, 3  
  
In these three comparisons, a = x4int + 1 and b = c = ᾱ – x4int –1.  
  
The other three comparisons will result in only x4int shared species with a total of 2ᾱ – x4int  
species  
  
TJk = 2(ᾱ – x4int) / (2ᾱ – x4int) for k = 4, 5, 6  
  
In these three comparisons, a = x4int and b = c = ᾱ – x4int.  
  
From these equations we can formulate the average turnover as:    
  





6

1
)6/1(

k

JkJ TT = (3/6)[2(ᾱ – x4int – 1) / (2ᾱ – x4int – 1)] + (3/6) [2(ᾱ – x4int / (2ᾱ – x4int)]   

  
JT = (1/2)[2(ᾱ – x4int – 1) / (2ᾱ – x4int – 1) + 2(ᾱ – x4int) / (2ᾱ – x4int)]  

■  
  
  
1.3 - Minimum average turnover as a function of z  
In sub-section 1.2, we defined several different formulations of JT = f(ᾱ, γ) which minimized  
average turnover value.  Here we will derive the function h(z) which also minimizes JT . This  
section is necessary because h(z) ≤  f(ᾱ, γ) and therefore, a simple reformulation of f(ᾱ,γ) in terms  
of z does not always result in h(z).    
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Theorem 1.3.1   
The minimum value of average turnover is JT = (22z – 1) / (22z – 1 + 1) for z[0,1].  
  
Lemma 1.3.2  
For a given z-value, the lowest JT will result from an assemblage composed of only x1 and x4  
species.  
  
Proof  
First we must recognize that a given z-value can be achieved by infinitely many different sets of  
ᾱ and γ, specifically: z = log2(γ/ᾱ)/2 = log2(γ*/ᾱ*)/2 where γ* = mγ , ᾱ* = mᾱ , and m is any  
positive number. Although ᾱ*

 and γ* have the same z as ᾱ and γ, it should be clear that the  
difference equations  3/)4(3/)4( γαγα  and  3/)4(3/)4( γαmγαm   may or may not  
be equal. These particular difference equations are of interest because their value determines  
which formulation of f(ᾱ, γ) will be used to minimize JT (see sub-sections 1.1 and 1.2).  In sub- 
section 1.1, it was noted that the difference equations will be equal to 0, 1/3, or 2/3 depending on  
how constrained x4max was by the requirement to be an integer.  A difference of zero implies that  
x4max is as large as possible which results in the lowest possible value of average turnover given  
z.  Furthermore, if m is a multiple of three (i.e., m = 3n where n is a positive integer) then  

    0)4()4(3/)4(3/)4(  γαnγαnγαmγαm  this follows because n(4ᾱ – γ) must be  
an integer given that we defined n, ᾱ, and γ as positive integers.  This demonstrates that for any  
values of α and γ there are corresponding values of ᾱ* = 3nᾱ and γ* = 3nγ that have the same z  
and result in an occupancy distribution composed of only x1 and x4 species (i.e., x = [γ*

 – 3nx4max,  
0, 0, 3nx4max]). Given that we are attempting to minimize turnover we want to have as many x4  
species as possible, and therefore we should derive JT = h(z) under the assumption that the  
occupancy distribution is composed of only x1 and x4 species. 

■  
  
Proof of Theorem 1.3.1  
In 1.2.1 we demonstrated that if x = [γ – x4max, 0, 0, x4max] then JT = 2(ᾱ – x4max) / (2ᾱ – x4max).  
Therefore we can reformulate JT = 2(ᾱ – x4max) / (2ᾱ – x4max) in terms of z, as follows:  

JT = 2(ᾱ – x4max) / (2ᾱ – x4max)   

JT = 2[ᾱ – (4ᾱ – γ)/3] / [2ᾱ – (4ᾱ – γ)/3]  

Because z = log2(γ/ᾱ)/2 we can solve for γ as, γ = ᾱ22z, and after substituting this into the  
equation for JT  we see that:  

JT = 2[ᾱ – (4ᾱ – ᾱ22z)/3] / [2ᾱ – (4ᾱ – ᾱ22z)/3]  






















3
2

3
4

3
6/

3
2

3
8

3
6 212 zz

J

αααααα
T   
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JT = (ᾱ22z+1 – 2ᾱ) / (ᾱ22z + 2ᾱ)  

JT = (22z – 1) / (22z – 1 + 1)  
■  

2 - Maximizing Pairwise Turnover  
  
Average turnover will be maximal when as many species as possible are at the lowest occupancy  
levels.  For example, the maximum average turnover of 1 is only possible when the entire  
community is composed of singletons – x1 species. Therefore, the first question to address, is if  
the entire community is composed of x1 species how many x1 species are there? Equations B.1  
and B.2 indicate that, x1 = γ and x1 = 4ᾱ if the community is composed of only singletons. These  
two statements imply that this can only be possible if γ = 4ᾱ. Below we derive the occupancy  
distributions, x, that maximize average turnover when γ is any value ranging from 4ᾱ to ᾱ.  We  
also provide the conversion of each range of γ values into a range of z-values.    
  
2.1 - Occupancy distributions that maximize turnover for a given ᾱ and γ  
  
Theorem 2.1.1  
If 4ᾱ/2 ≤ γ  ≤ 4ᾱ (i.e., 0.5 ≤ z ≤ 1) then average turnover is maximal when x = [2γ – 4ᾱ, 4ᾱ – γ, 0,  
0].   
  
Proof   
As noted, the maximum value of 1 for average turnover only occurs when γ = 4ᾱ and therefore  
all species in the community are x1 species. Now consider the situation in which γ is slightly less  
than 4ᾱ (we will define how much less shortly), then there must be species at occupancy levels  
other than x1. We wish again to maximize turnover, therefore we will place as many species as  
possible into the x1 occupancy level and the remaining species will be placed in the x2 occupancy  
level. If there are only x1 and x2 species, (1) and (2) simplify to: x1 + x2 = γ and x1 + 2x2 = 4ᾱ.   
After substitution of terms and rearrangement:  
  
x1 = 2γ – 4ᾱ   
x2 = 4ᾱ – γ  
  
These equations were derived by considering a γ value less than 4ᾱ, now we will define what  
value of γ these equations will hold over. If we consider the equation for x1, we can see that x1  
will only be a non–negative integer (i.e., a reasonable value) when γ ≥ 4ᾱ/2. Note that when γ =  
4ᾱ/2, x1 = 0 and x2 = γ, we will refer to this situation as the ‘doubleton community’ because all of  
the species are of the x2 occupancy level. Also note, if γ = 4ᾱ (as in the singleton community)  
then our equations for x1 and x2 produce satisfactory results, namely, x1 = γ and x2 = 0. Therefore,  
if 4ᾱ/2 ≤ γ  ≤ 4ᾱ then average turnover is maximal when  x = [2γ – 4ᾱ, 4ᾱ – γ, 0, 0].  

■  
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Theorem 2.1.2  
If 4ᾱ/3 ≤ γ < 4ᾱ/2 (i.e., log2(4/3)/2 ≤ z < 0.5) then average turnover is maximal when x = [0,3γ –  
4ᾱ, 4ᾱ – 2γ, 0].  
  
Proof   
Consider again the doubleton community (see above), in which γ = 4ᾱ/2.  If γ was slightly less 
than 4ᾱ/2 (we will define how much less shortly), species at occupancy levels other than x2 must  
exist in the community. Because we are attempting to maximize turnover, the other occupancy  
level/s could be x1 and/or x3. It should be clear that adding an x4 species would contribute too  
many shared species to maximize turnover. Also if the assemblage is composed of only x1 and x2  
species then ]4,2/4[ ααγ  and the results from Theorem 2.1.1 hold.  Therefore, the question  
arises of whether or not the assemblage should be composed of x1, x2 and x3 species or only x2  
and x3 species.  
  
Here we will quickly prove that turnover will be maximized by considering a community  
composed of only x2 and x3 species.  Consider two x2 species arranged such that each quadrat has 
a richness of one.  There are a total of two shared species in this case.  If we exchanged these two  
x2 species for one x1 and one x3 species and arranged them such that quadrat richness is still one, 
then the total number of shared species will be three.  To maximize turnover, we must minimize  
the number of shared species all else being equal.  Therefore, whenever 4ᾱ and γ are such that an  
x1 and x3 could be placed in the community, average turnover will be larger if two x2 species are  
considered in the community instead.  This suggests that if we wish to maximize turnover we  
should not consider assemblages in which x1 and x3 species co-occur.   Therefore, we will  
assume that the community only contains x2 or x3 species, in which case equations (B.1) and  
(B.2) simplify to: x2 + x3 = γ and 2x2 + 3x3 = 4ᾱ. After substitution of terms and rearrangement:   
  
x2 = 3γ – 4ᾱ   
x3 = 4ᾱ – 2γ  
  
We can define the minimum value of γ that these equations will apply to by examining the  
equation for x2.  This equation will only produce non–negative integer values when γ ≥ 4ᾱ/3.  At  
the boundary when γ = 4ᾱ/3, x2 = 0 and x3 = γ, we will refer to this situation as the ‘tripleton  
community’. Therefore, if 4ᾱ/3 ≤ γ < 4ᾱ/2 then average turnover is maximal when x = [0,3γ – 4ᾱ,  
4ᾱ – 2γ, 0].  

■  
  
Theorem 2.1.3  
If ᾱ ≤ γ < 4ᾱ/3 (i.e., 0 ≤ z < log2(4/3)/2) then average turnover is maximal when x = [0, 0, 4γ –  
4ᾱ, 4ᾱ – 3γ].    
  
Proof   
Consider again the tripleton community, in which γ = 4ᾱ/3. If gamma was slightly less than 4ᾱ/3,  
then x4 species would have to be present in the community. Therefore, consider the community  
which is composed only of x3 and x4 species, equations (B.1) and (B.2) simply to x3 + x4 = γ and  
3x3 + 4x4 = 4ᾱ.  After substitution of terms and rearrangement:   
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x3 = 4γ – 4ᾱ   
x4 = 4ᾱ – 3γ  
 
We can define the minimum value of γ that these equations will apply to by examining the  
equation for x3.  This equation will only produce non–negative integer values when γ ≥ ᾱ. At the 
boundary when γ = ᾱ, x3 = 0 and x4 = γ. Therefore, if ᾱ ≤ γ < 4ᾱ/3 then average turnover is  
maximal when x = [0, 0, 4γ – 4ᾱ, 4ᾱ – 3γ].   

■ 
  
2.2 - Maximum average turnover and matching/mismatching components as a function of ᾱ, γ,  
and z  
  
Before we derive expressions that maximize JT , we must prove two lemmas that guide how x2  
species should be arranged in the presence-absence matrix to maximize JT .  In general, it is  
important to consider that two communities may have identical occupancy distributions but  
different values of JT .  In the preceding sections this fact was not a concern because there was  
only a single possible presence-absence matrix which could be composed of only x1, x4, and  
possibly one x2 or x3 species given that each site had to contain exactly ᾱ species.  Fixed quadrat  
richness does not place as strong of a constraint on the arrangement of species in an assemblage  
composed of primarily x2 or x3 species which may be arranged in different ways and still result in  
the same column sums. A simple example demonstrating this is provided in Table B3.  In the  
table there are two hypothetical communities both with the occupancy distribution, x = [2, 3, 0,  
0], but the communities differ in terms of their JT value.     
  
Table B3. Two example species presence-absence matrices that demonstrate that JT may differ  
for two assemblages with the same x.  A grey shaded cell represents a species presence and a  
white cell represents a species absence.  
Community   A 

 

B 
Quadrat 1 2 3 4 1 2 3 4 
species 1 

  
    

 
    

  species 2     
    

    
 species 3 

  
    

   
    

species 4 
 

  
   

  
   species 5   

       
  

Richness 2 2 2 2 
 

2 2 2 2 
JT  7/9 = 0.778  5/6 = 0.833 

  
  
There are many different possible arrangements of x2 or x3 species, and therefore it is necessary  
that we identify what arrangements of species maximize JT for a given x.  Our simple example in  
Table B3 suggests one possible way to begin addressing this problem.  If we consider the set of  
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the six pairwise comparisons for each assemblage, we can see that community B, which has the  
larger value of JT , has a lower amount of variance in its shared species distribution than  
community A.  Specifically the vector of shared species for each pairwise comparison in  
community A is aA = [1,0,0,0,0,2] and for community B is aB = [1,0,0,1,0,1]. This demonstrates 
that both assemblages possess a total of 3 pairwise shared species occurrences, but that these  
occurrences are more evenly distributed in community B than in A.   
  
Lemma 2.2.1  
If two communities have the same occupancy distribution the one with lower variance in the  
distribution of shared species will have a larger value of JT .  
  
Proof  
Consider two assemblages, A and B, with identical values of γ and ᾱ.  The assemblages also have  
identical shared species distributions with the exception of two of the six pairwise comparisons.   
In community A, the number of shared species in the two comparisons of interest is equal to a, in  
community B the shared number of species in the two comparisons is a – 1 and a + 1  
respectively where a is a positive integer greater than 1.  Both communities have the same total  
number of shared species occurrences, but the community A has a slightly lower variance in its  
distribution of shared species when compared with community B. To prove that this lower  
variance will result in a larger value of JT we only need to consider the sum of the two TJk terms  
resulting from the comparisons in which the two communities differ in their distribution of  
shared species.  The sum of the other four TJk terms must be equal between the two communities  
given that they have the same shared species distribution for these comparisons.  Therefore, we  
must prove that the following is true:   
  


































)1a(2
)1a(22

)1a(2
)1a(22

a2
a222

   B2B12A1A













JJJJ TTTT

  

  
The above inequality asserts that the sum of the two TJk terms in the community without variance  
in its shared species (community A) is greater than the sum of the two TJk terms in the  
community with variance in its shared species (community B).    
  
To simplify the equation we will perform a change of variables, y = 2ᾱ and we will expand out  
the factions by multiplying both sides by (y – a)(y – a – 1)(y – a + 1).  When this is done the LHS  
expands to:  
  
2(y3 – 2a3 – 4y

2a + 5ya2 – y + 2a)  
  
The first fraction in the RHS expands to   
  
y

3 – 2a3 – 4y
2a + 5ya2 – y2 + ya – 2y + 2a  

  
and the second fraction in the RHS expands to   
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y
3 – 2a3 – 4y

2a + 5ya2 + y2 – ya – 2y + 2a  
  
Therefore, when we combine both parts of the RHS we see that it is equal to   
  
2(y3 – 2a3 – 4y

2a + 5ya2 – 2y + 2a)  
  
Now bringing the LHS and RHS back together we see that the original formula implied that  
  
2(y3 – 2a3 – 4y

2a + 5ya2 – y + 2a) > 2(y3 – 2a3 – 4y
2a + 5ya2 – 2y + 2a)  

  
And after crossing off like terms, the inequality reduces to 1 < 2 which is obviously true.   

■  
  
Lemma 2.2.2  
If x2 or x3 species are in an assemblage, the function h(z) which maximizes JT  must be based  
upon the assumption that the x2 species contribute x2/6 and the x3 species contribute x3/2 shared  
species to each pairwise comparison.   
  
Proof  
From Lemma 2.2.1 we know that to maximize JT the x2 and x3 species must be arranged to  
minimize variance in the distribution of shared species. The minimum amount of variance in a  
distribution of shared species is zero, in which case JkJ TT  . The presence-absence matrices in  
Table B4 display the arrangement of a set of x2 and a set x3 species that result in zero variance in  
the shared species distribution and quadrat richness is constant.  These arrangements provide a  
basis for calculating how many shared species will be contributed in the pairwise comparisons. 
 
Table B4. A presence-absence matrix of a set of six x2 species and a set of four x3 species in  
which there is zero variance in the distribution of shared species occurrences.  In the set of x2 
species, each quadrat contributes 1 shared species in every pairwise comparison (i.e., a = 1), and  
in the set of x3 species, each quadrat contributes 2 shared species in every pairwise comparison 
(i.e., a = 2). A grey shaded cell represents a species presence and a white cell represents a species  
absence.  

 
  x2 species 

 

x3 species 
Quadrat 1 2 3 4 1 2 3 4 
species 1 

  
    

     species 2     
       species 3 

         species 4 
 

  
       species 5 

         species 6 
          



Daniel J. McGlinn and Allen H. Hurlbert 

15 
 

The sets of species in Table B4 represent the simplest arrangement of x2 and x3 species with zero  
variance in the distribution of shared species and constant quadrat richness. The fact that each  
quadrat has equal richness is critical because it allows us to individually consider the  
contribution of each level of occupancy to the total number of shared species.    
  
Now we will prove why h(z) should be based upon the assumption that if x2 species are present  
the number of shared species contributed to each pairwise comparison by these species is x2/6.  
The arrangement of x2 species given in Table B4 demonstrates that for every six x2 species a = 1.   
This suggests that when x2 is a multiple of six that the number of shared species in a single  
pairwise comparison is equal to:  
  
a = g(ᾱ, γ)/6 where x2 = g(ᾱ, γ).  
  
Although this definition of a is only applicable to a limited set of ᾱ and γ values, specifically 
those in which g(ᾱ, γ)/6 is an integer, it holds for any value of z.  This is because for any z-value  
calculated from ᾱ and γ, there also exists ᾱ* = mᾱ and γ* = mγ that result in the same z but for  
which g(ᾱ*, γ*) = x2

* is a multiple of six.    
  
Therefore for a given z-value,   
 

6/),(2
6/),(22

6/),(2
6/),(22

a2
a22

***

***

*

*

γmαmgαm

γmαmgαm

γαgα

γαgα

α

α
TJ














   

  
If we consider that both expressions of x2 = g(ᾱ, γ) described in Theorems 2.1.1 and 2.1.2 are  
linear equations then it should be clear that we can factor m out of g(mᾱ, mγ). Therefore,  
  

6/),(2
6/),(22

γαgα

γαgα
TJ




    

  
This demonstrates that for a given z-value the function JT = h(z) should be based upon the  
assumption that a = g(ᾱ, γ)/6 = x2/6 even if this is a non-integer value.  An identical line of  
reasoning can be used to show that h(z) must be based upon the assumption that the x3 species  
contribute x3/2 shared species to every pairwise comparison.  

■  
Theorem 2.2.3  
If 4ᾱ/2 ≤ γ ≤ 4ᾱ (i.e., 0.5 ≤ z ≤ 1) then JT = )22/()12( 2212   zz , and when x2/6 is an integer,  

JT = (2ᾱ + γ) / (4ᾱ + γ/2), a = 2ᾱ/3 – γ/6, and b = c = ᾱ/3 + γ/6.  
  
Proof  
We saw that in Theorem 2.1.1 that when 4ᾱ/2 ≤ γ ≤ 4ᾱ that x = [2γ – 4ᾱ, 4ᾱ – γ, 0, 0] and because 
the x1 species will not contribute any shared species in the pairwise comparisons we only need to  
calculate how many shared species the 4ᾱ – γ, x2 species will contribute in the pairwise  
comparisons.  In Lemma 2.2.2 we demonstrated that the derivation of h(z) = JT should be based  
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upon the assumption that a = x2/6.  If x2/6 is an integer then we can formulate JT = f(ᾱ, γ) as  
follows:  
  

 
2/4

2
)2/4(

)2(
6/)4(2
6/)4(22

6/2
6/22,

3
1

3
1

2

2

γα

γα

γα

γα

γαα

γαα

xα

xα
γαfTJ



















   

  
Obviously in this case, a = (4ᾱ – γ)/6 = 2ᾱ/3 – γ/6 and b = c = (2ᾱ + γ)/6 = ᾱ/3 + γ/6. 
 
We currently lack a derivation of f(ᾱ, γ), a, b, and c when x2/6 is a non-integer due to the  
complexity of specifying what arrangement the x2 species must take in the presence-absence  
matrix.  
To derive JT = h(z) we can substitute γ = 22z

ᾱ into f(ᾱ, γ),   
  

)22/()12(
24
22

2/24
22 2212

12

2

2

2
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
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z

J
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As noted in Lemma 2.2.2 this last expression will hold whether x2/6 is an integer or not.  

■  
Theorem 2.2.4 

If 4ᾱ/3 ≤ γ < 4ᾱ/2 (i.e., log2(4/3)/2 ≤ z < 0.5) then 
JT = )2/()2( 3

212
3
22  zz , and when x2/6 + x3/2 is  

an integer, 
JT = (γ – 2ᾱ/3) / (γ/2 + 2ᾱ/3), a = 4ᾱ/3 – γ/2, and b = c = γ/2 – ᾱ/3.  

  
Proof  
We saw that in Theorem 2.1.2 that when 4ᾱ/3 ≤ γ < 4ᾱ/2 that x = [0,3γ – 4ᾱ, 4ᾱ – 2γ, 0] and in  
Lemma 2.2.2 we proved that the derivation of h(z) = JT should be based upon the assumption that  
a = x2/6 + x3/2 = (3γ – 4ᾱ)/6 + (2ᾱ – γ) = 4ᾱ/3 – γ/2.  If x2/6 + x3/2 is an integer then we can  
formulate JT = f(ᾱ, γ) as follows:  
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Obviously in this case, a = 4ᾱ/3 – γ/2 and b = c = (γ – 2ᾱ/3)/2 = γ/2 – ᾱ/3.  
  
We currently lack a derivation of f(ᾱ, γ), a, b, and c when x2/6 + x3/2 is a non-integer due to the  
complexity of specifying what arrangement the x2 and x3 species must take in the presence- 
absence matrix.  
 
To derive JT = h(z) we can substitute γ = 22z

ᾱ into f(ᾱ, γ),   
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As noted in Lemma 2.2.2 this last expression will hold whether x2/6 + x3/2 is an integer or not.  
■  

Theorem 2.2.5  
If ᾱ ≤ γ < 4ᾱ/3 (i.e., 0 ≤ z < log2(4/3)/2) then JT = γαγz /)(222 21   , a = 2ᾱ – γ, and b = c = γ  
– ᾱ.   
 
Proof  
We saw that in Theorem 2.1.3 that when ᾱ ≤ γ < 4ᾱ/3 that x = [0, 0, 4γ – 4ᾱ, 4ᾱ – 3γ] and in  
Lemma 2.2.2 we proved that the derivation of h(z) = JT should be based upon the assumption that  
a = x3/2 + x4 = (4γ – 4ᾱ)/2 + (4ᾱ – 3γ) = 2ᾱ – γ.  Because ᾱ and γ are integers, 2ᾱ – γ will be an  
integer and we can formulate JT = f(ᾱ, γ) as follows:  
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Obviously in this case, a = 2ᾱ – γ and b = c = 2(γ – ᾱ)/2 = γ – ᾱ. To derive JT = h(z) we can  
substitute γ = 22z

ᾱ into f(ᾱ, γ),   
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■  
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