
1 

 

McClintock, B. T., D. J. F. Russell, J. Matthiopoulos, and R. King. 2013.  Combining individual 

animal movement and ancillary biotelemetry data to investigate population-level activity 

budgets.  Ecology. 

APPENDIX A   

Prior specifications, prior sensitivity, and goodness of fit for the harbor seal example 

 Prior specification.  For reference, we first review the model specification.  We have 

assumed 

, , , ,| , , ~ Weibull( , )n t n n n t n i n is z i a b  a b
 

for state-specific scale parameter , 0n ia  and shape parameter , 0n ib  , where  

   ,

2
, ,log ~ ,

i jn i i ja N    

and  

   ,

2
, ,log ~ ,

i jn i i jb N    

for , ,i R F T and n = 1,..., N, where j = 1 if individual n is male and j = 2 otherwise.  We also 

assume  

 , , , 1 ,| , ~ wCauchy ,n t n n t n t n iz i    
 

with bearing ,0 2n t   and state-specific directional persistence ,0 1,n i   where 

   ,

1 2
, ,tanh ~ ,

i jn i i j rN r  . 

For the proportion of each time step spent diving below 1.5m  ,n t , we assume  

 , , , ,| , , ~ Beta ,n t n t i j i jz i     
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where , ,F j T j   and , ,F j T j  .  

In terms of trajectory, we would expect speeds to be low during resting and low to 

moderate during foraging, with little directional persistence.  During transit, we would expect 

high speeds and high directional persistence.   To reflect these expectations, we assigned priors 

for the movement process parameters as follows.  We assigned uniform priors on the inverse log 

scale for the population-level step length parameters  

    , ,exp ~ Unif 0,expR j F j   

      , , ,exp ~ Unif exp ,expF j R j T j    

    , , maxexp ~ Unif exp ,T j F j s   

   ,exp ~ Unif 0,5i j
 

and constrained the individual-level step length parameters on the real scale
 

, , , max0 n R n F n Ta a a s     

, 5n ib 
 

for i = R, F, T, n = 1,..., N, and 1,2j  (male and female, respectively), where maxs is the 

maximum possible distance an individual can travel within each time step.  We specified 

max 14.4s  km based on a maximum sustainable speed of 2 m per second (Cunningham et al. 

2009).  We also constrained predicted locations  , 1 , 1,n t n tX Y  and  , ,,n t n tX Y  such that , maxn ts s .  

For computational efficiency and simplicity, we did not prevent predicted locations from being 

inland.  Although these instances were relatively rare, such constraints would facilitate more 
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realistic predictions about harbor seal movements in the vicinity of land.  This is particularly true 

for time steps with no observed locations (i.e., , 0n tk  ). 

 We assigned uniform priors on the hyperbolic tangent of the population-level directional 

persistence parameters 

   ,tanh ~ Unif 0,1R jr  

    , ,tanh ~ Unif 0, tanhF j T jr r  

   , mintanh ~ Unif ,1T jr 
 

and constrained the individual-level directional persistence parameters on the real scale
 

, ,n F n T   

min ,n T   

where min is the minimum mean vector length for the transit state.  We specified min 0.75  to 

inform a relatively strong directional persistence when in the transit state.   

 For the (state-dependent) Beta prior distributions for ,n t , we assigned hyperpriors based 

on the expected relationships between time spent diving below 1.5m and the three movement 

behavior states.  Relative to the foraging and transit states, we expected less time spent diving 

below 1.5m during the resting state.  We also expected dive times to be similar for the foraging 

and transit states.  We therefore assigned the uniform priors 

 , ,~ Unif 1,R j R j   

 , ,~ Unif ,10F j F j   

 , ,~ Unif ,10R j R j   
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 , ,~ Unif 1,F j F j   

where , ,T j F j   and , ,T j F j  .  We note that under this prior specification, 

 , ,| , , ~ Unif 0,1n t n tz i   
 
when , , 1.i j i j    We set the lower bound at 1 to prohibit 

bimodal (i.e., "bathtub-shaped") distributions.  We specified the upper bound at 10 to ensure that 

at the extremes [i.e., Beta(1,10) or Beta(10,1)] there would remain some prior density for all 

three states when , 0.5n t  , but little prior density for resting when , 0.5n t  or for foraging and 

transit when , 0.5n t    (Fig. A1).  Additional prior specifications are reported in Table A1. 

 Prior sensitivity.  We found some sensitivity to the hyperprior specification of the (state-

dependent) Beta distributions for ,n t .  This is evident in the estimated posterior densities at the 

lower or upper boundaries for ,1R , ,2R , and ,1F (see Appendix C).   Although we believe the 

posterior densities at the lower bound are biologically justified in prohibiting bimodal 

distributions, we suspect prior sensitivity at the upper bound may be related to a lack of model fit 

attributable to mid-interval state switches between resting and foraging or transit.  For example, 

if an individual switched from resting to transit mid-interval, this time step could potentially be 

assigned to any of the three movement behavior states (depending on the average speed and 

direction of movement over the entire interval).  While we expected , 0.5n t  for the resting 

state and , 0.5n t  for the foraging and transit states, about 10% of  the diving proportions were 

between 0.4 and 0.6.  We therefore conducted another analysis to investigate prior sensitivities to 

the upper bound using the following less-informative hyperpriors: 

 , ,~ Unif 1,R j R j   
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 , ,~ Unif ,100F j F j   

 , ,~ Unif ,100R j R j   

 , ,~ Unif 1,F j F j  , 

where , ,T j F j   and , ,T j F j  .   

 With these hyperpriors, we found little difference for the females, but we did find 

differences for the males.  Estimated male activity budgets using these less-informative 

hyperpriors were 0.53 (95%HPDI: 0.52–0.53) for resting, 0.38 (0.37–0.39) for foraging, and 0.09 

(0.09–0.10) for transit.  Movement characteristics were similar, but very few times steps with 

, 0.6n t   were assigned to foraging or transit.  There were also many time steps with , 0.5n t   

that were assigned to resting (Figs. A2 and A3).  In short, allowing more peaked distributions for 

,n t produced what appear to be biologically unreasonable results for males.  We therefore found 

the original hyperprior specification justifiable and more reasonable, but acknowledge that mid-

interval state switches or some structural deficiencies may be inducing a lack of model fit.   It is 

also possible that resting on the sea floor or display dives during the breeding season are more 

likely to be assigned to resting than to foraging with the less-informative prior specification. 

 We also investigated alternative priors for ,n t using the logit-normal distribution.  

Specifically, we assigned  2
, , , ,| , , ~ Logit-Normal ,n t n t i j i jz i      for , ,i R F T and 

1,2j   where , ,F j T j   and 2 2
, ,F j T j  .  Although the logit-normal distribution does not have 

an analytical mean or variance, we used numerical methods to assign hyperpriors that yield logit-

normal prior distributions that closely resemble the original Beta priors (and still prohibit 

bimodal densities): 
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 , ~ Unif 3.258,0R j   

 , ~ Unif 0,3.258F j  

 2 2
, ~ Unif 0,1.69R j  

 2 2
, ~ Unif 0,1.69F j

 

With this prior specification, we achieved virtually identical results as with the original Beta 

priors.   However, we found greater prior sensitivity when using the following less-informative 

hyperpriors for the logit-normal parameters: 

 , ~ N 3.258,1R j   

 , ~ N 3.258,1F j  

 2 2
, ~ Unif 0,1.69R j  

 2 2
, ~ Unif 0,1.69F j

 

This specification resulted in biologically unreasonable results for both sexes, with only those 

time steps with , 0.0n t  assigned to the resting state (16% and 10% of time steps were assigned 

to resting, 71% and 81% to foraging, and 13% and 8% to transit for males and females, 

respectively).  

 Goodness of fit.  We used residual plots and Bayesian posterior predictive checks (e.g., 

Gelman et al. 2005) to help assess goodness of fit.  The estimated observation model error terms, 

, ,n t ix and 
, ,n t iy , relative to , ,n t ij (the timing of each observation within each 120min time step) 

provided no indication of lack of fit of our normally-distributed observation model when using 

both location and dive activity data (Fig. A4).  However, normal QQ plots for 
, ,n t ix and 

, ,n t iy for 
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the N = 17 seal tracks (Fig. A5) suggest shorter tails than would be expected from a normal 

distribution (for reference, Fig. 4a corresponds to individual n = 8 and Fig. 4b corresponds to 

individual n = 1).  We believe this "short-tail" tendency beginning at 2–3 standard deviations is a 

result of step lengths (st) being constrained by the maximum speed of 2 m/s, i.e., max(st) = 14.4 

km.  In other words, this prior distribution on st  reduces the potential for particularly large 

, ,n t ix and 
, ,n t iy .  We note that increasing the maximum speed >2 m/s is not biologically realistic 

for this species. 

 Auto-correlation plots for 
, ,n t ix and 

, ,n t iy (Fig. A6) indicate correlations drop off relatively 

rapidly for the individual tracks, although some individuals exhibit what appear to be somewhat 

unusual lower-order correlations.  The more unusual lower-order correlation patterns are the 

price we pay for discretization of the movement path into 120min step lengths (e.g., imagine 

drawing a straight line through an S-shaped path, much like a dollar symbol $).  Because these 

correlations are a function of the observed location data and the time step length, we don't 

believe a reasonable a priori error structure could be devised to accommodate this.  Given our 

goal was not to perfectly recreate each individual movement path (but only to reasonably 

characterize them into 120 min time steps), we do not believe much would be gained by 

attempting a more complicated error structure to accommodate these departures from normality. 

 As an additional assessment of goodness of fit, we adapted the approach proposed by 

Gelman et al. (2005) for Bayesian posterior predictive checks and p values with missing data and 

latent variables.  The basic idea is to simulate the data ( repx , repy , rep ) from each draw of the 

posterior and compare the simulated data (from the model) to the observed data using a 

discrepancy function.  Specifically, at each iteration g of the MCMC chain, we sample 
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  
  

( ) ( ) ( ) 2( )
, , , , 1 , ,

( ) ( ) ( ) 2( )
, , , , 1 , ,

~ 1 , ,

~ 1 , ,

rep g g g g
n t i n t i t n t i t x
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n t i n t i t n t i t y

x N j X j X

y N j Y j Y









 

 
 

and 

 ( ) ( ) ( ) ( )
, , , ,| ~ ,rep g g g g

n t n t i j i jz i Beta     . 

Following Gelman et al. (2005), our discrepancy functions for x and ywere ( )sd x and ( )sd y , 

where sd is the standard deviation.  The posterior predictive p values are then 

  ( )Pr ( )rep gsd sdx x  and   ( )Pr ( )rep gsd sdy y .  The resulting posterior predictive p-

values were 0.54 and 0.53, respectively, indicating no discrepancy between our replicated data 

from the model and the observed data. 

 For the dive activity data, we used ( )sd  and 
n t
  as discrepancy functions, the latter 

being a measure of the total amount of time the population spent diving below 1.5 m.  The 

posterior predictive p-values are then   ( )Pr ( )rep gsd sd   and ( )Pr rep g

n t n t

 
 

 
   .  

We did find evidence of our replicated dive data being slightly underdispersed relative to the 

observed dive activity data, with ( ) 0.33sd   and mean ( )( ) = 0.32rep gsd   (estimated p-value = 

0.0).  We do not find this slight discrepancy to be particularly alarming (because the magnitude 

of the discrepancy is so small), but this nonetheless is an indication of some lack of fit (most 

likely in the extreme tails) of the estimated Beta distribution parameters given these data and 

prior specifications.   The other discrepancy measure, 
n t
 , indicated no strong evidence of a 

discrepancy (p value = 0.17) between our replicated data from the model and the observed data. 

 These goodness of fit diagnostics for the observation model (
, ,n t ix and 

, ,n t iy or 
, ,n t i

repx and  
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, ,n t i

repy ) were similar for the analysis utilizing location data only.  These were therefore not 

particularly useful for comparing the two analyses.  We instead used measures relative to the 

observed dive activity data for model comparisons (see Example results and discussion). 
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TABLE A1.  Additional prior specifications for a Bayesian analysis of harbor seal activity budgets 

utilizing both location and diving data.  The movement behavior states include resting (R), 

foraging (F), and transit (T). 
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Parameter Description Prior distribution 

,0n  Direction (or bearing) of movement for initial time step 

t = 0 for individuals n = 1,..., N. 

Unif (0,2 )  

,

2

z j  
Log-scale variance for individual-level random effect 

on the step length scale parameter  ,z s of males (j = 

1) and females (j = 2) for states z = R, T, F. 

 1 3, 2  

,

2

z j  
Log-scale variance for individual-level random effect 

on the step length shape parameter  ,z j of males (j = 

1) and females (j = 2) for states z = R, T, F. 

 1 3, 2  

,

2

z jr  
Variance for individual-level random effect on the 

directional persistence parameter  ,z j of males (j = 1) 

and females (j = 2) for states z = R, T, F. 

 1 3, 2  

2
x  Measurement error variance for longitudinal 

coordinates of observed locations  , , , ,,n t i n t ix y . 

 1 61,10   

2
y  Measurement error variance for latitudinal coordinates 

of observed locations  , , , ,,n t i n t ix y . 

 1 61,10   

, ,k j  The kth row vector of the state transition probability 

matrix for males (j = 1) and females (j = 2), with each 

Dirichlet(1,1,1)  
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element  , ,k i j  corresponding to the switching 

probability from state k at time t - 1 to state i = R, T, F 

at time t. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. A1. State-dependent prior densities for the proportion of each time step spent below 1.5m 

  at the extremes of the hyperprior distributions.  These state-dependent prior distributions are 
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   | ~ Beta 1,10z R 
 
for the resting state and    | , ~ Beta 10,1z F T  for the foraging and 

transit states. 
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FIG. A2. Posterior histogram of sex- and state-dependent proportions of time step spent diving 

below 1.5m  ,n t for 17 harbor seals in the UK when using a less-informative hyperprior 

specification of the Beta distribution for ,n t (shown in red). 
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FIG. A3. Estimated bivariate densities of harbor seal step length and proportion of time step spent 

diving below 1.5m  ,n t when using a less-informative hyperprior specification of the Beta 

distribution for ,n t .  Separate densities were estimated for males and females with three distinct 

movement behavior states ("resting", "foraging", and "transit"), where darker shades indicate 

higher relative densities. 
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FIG. A4.  Posterior means of the observation model error terms, 
, ,n t ix and 

, ,n t iy , relative to 

, ,n t ij (the timing of each observation within each 120-min time step). 
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FIG. A5.  Normal QQ plots for the posterior means of the observation error terms, 
, ,n t ix (a) and 

, ,n t iy (b) for individuals n = 1, ..., 17. 

(a) 
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(b) 
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FIG. A6.  Auto-correlation plots for the posterior means of the observation error terms, 
, ,n t ix (a) 

and 
, ,n t iy (b) for individuals n = 1, ..., 17. 

(a) 
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(b) 

 

 

 

 

 

 


