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APPENDIX A 

Mathematical derivation of the generalized MTE model 

We proposed a generalized metabolic theory of ecology (MTE) to explain the structure 

of individual size distribution (ISD). In the generalized MTE model, we relax the assumption 

of linear size-TL relationship. (Size is measured as log body mass or log body volume; 

hereafter, we refer to logM as the body size. TL is the trophic level.) In the original metabolic 

theory (Brown et al. 2004), the ISD was derived by comparing the ratio between the total 

metabolism and individual metabolism of organisms at any given size M under the 

consideration of energy loss due to trophic transfer. The trophic level critically depends on 

the size of organisms. Consider the total metabolism Itot(M) for organisms of body size M, 

 Itot (M )  i0N0M0
3/4eE /kT (M )                          (A.1)  

where i0 is the normalization constant, N0 is the primary producer abundance, M0 is the 

primary producer body size, and α is the transfer efficiency across trophic levels. Here, τ(M) 

is the trophic level at size M, which represents the size-TL relationship. In the original MTE, 

the size-TL relationship is assumed to be a linear function of logM:  
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b   and 0log/11  b , and β is the predator-prey mass ratio (PPMR). 

Note that this assumption implies that the PPMR is a constant and independent of body size. 

In the general MTE model, we relax this assumption of linear size-TL relationship; we 

assume that τ(M) is a smooth function of body size which can be approximated by a mth order 

polynomial function, i.e.  
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This phenomenological approximation is motivated by empirical observations (see main text). 

With this setting, )(M  in the original MTE model should be replaced by the mth order 

polynomial of logM as follows:  
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Because the abundance N of organisms with size M is equal to the total metabolism Itot 

divided by individual metabolism Iind of size M, we derive the following relationship: 
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where λ is the metabolic exponent, which is usually taken as 3/4 as the original MTE (Brown 

et al. 2004) or can be other values derived from other models (Pawar et al. 2012). For 

simplicity, we assumed that trophic efficiency α is equal to 10% as suggested in previous 

studies (Lindeman 1942, Brown and Gillooly 2003). Thus, the derived ISD is further 



simplified to:  
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where a is equal to 4/3
00

01.0 MNb  and is the constant that determines the intercept of the ISD. 

According to this equation, the log transformed ISD can be decomposed into two major 

components: the power-law core distribution, -(λ+b1)logM, and the polynomial secondary 

structure,  
m
i

i
i Mb2 log . Here, the power-law componenet has the same structure as 

predicted by the original MTE (Brown et al. 2004). While in this study, we additionally 

identify the secondary structure, which has not been quantitatively examined before. Here, 

we aim to emphasize and derive the theoretical properties of the secondary strucutre in this 

study. Based on eqn A.3, the magnitude of the secondary strucutre, bi, is much smaller than 

the power-law exponent because the power exponent, -(λ+b1), contains a large metabolic 

exponent (i.e. ¾, according to Brown et al 2004). Therefore, we can see that the secondary 

structure is subtle and has a much smaller value than the power-law component. However 

importantly, the power-law distribution and secondary structure of ISD come from different 

ecological processes acting at different scales. The power-law compoenent is the result of 

size-metabolism scaling and average predator-prey mass ratio, while, the secondary strcture 

comes from the complexity of trophic links (the nonlinearity of size-TL relationship) in 

size-based food webs. In addition, the eqn A.3 also indicates that the secondary structure can 



be separated from the power-law component in log ISD; that is, one can isolate the secondary 

structure from the power-law distribution in empirical measurements. More specifically, after 

partitioning out the power-law component from the log ISD by statistical fitting, the residuals 

deviating from such power-law fitting will leave only secondary structure (plus small random 

noise). Therefore in empirical measurements, in order to extract the secondary structure of 

ISD, we suggest to obtain the residuals of the log ISD from fitting the power-law, instead of 

simultaneously fitting both the power-law exponent and the polynomial secondary structure. 

Such a two-step fitting procedure (excluding the power-law first and then obtaining the 

secondary structure from the residuals) allows one to extract the secondary structure (See 

justification in Appendix C). Because the residuals contain information of secondary structure, 

we practically define the secondary structure of ISD as the polynomial function of ISD 

residuals versus body size. In the following section, we will discuss the theoretical properties 

of the residuals. 

As explained above, the secondary strucutre of ISD appears when the size-TL 

relationhip is nonlinear. More importantly, the residuals deviating from the power-law fitted 

log ISD contain determinstic secondary structure, a footprint of the nonlinear size-TL 

relationhip. Consider a ISD data set (Ni, Mi), i=1, 2, ..., n, collected under the size-TL 

relationship following mth order polynomial relationship. After been log transformed, the 

relationship between Ni and Mi can be presented in a matrix form:  
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where ),0(~ 2 i , all εi are independent identical distributed. The expectation of Y can be 

expressed as  
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where )...( 21 nMMMM .  

Partitioning the matrix, one would get 
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Accordding to the statistical theory of linear models, if we fit the ISD (fitting Y by X) by a 

simple power-law model using a least squares approach, the residuals e of such a fitting 

would demonstrate higher order determinstic structure. 

YHIe )(  , 

where I is n-dimensional identiy matrix; T1-T )( XXXXH   is the hat matrix that projects Y 

onto the linear space spanned by X. Taking the expectation for the residuals and substituting 



the expectration of Y by eqn A.4, one obtains the expectation of residuals e as 
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Each column of Q, MHIQ j
j log)(  , is the least squares residual of log jM fitted by X, 

j=2, ..., m. This theoretical property is useful. It indicates that the residuals of ISD deviating 

from the power-law fit can be used to predict the polynomial coefficients of size-TL 

relationship, bp, quantitatively. Practically, this prediction can be implemented if we fit the 

residuals of ISD (deviating from the linear fit in log space) by a multiple regression model 

with the covariates –Qj which are the negative value of least square residuals of logjM fitted 

by logM, j=2, ..., m. In this multiple regression, the regression coefficients can be used to 

predict the same order polynomial coefficients of size-TL relationship. Ecologically, such 

prediction allows us to link the dynamics of ISD with the dynamics of a complex size-based 

food web. We note that there is no theoretical value of m (the order of polynomial function); 

rather, m can be determined empirically according to some statistical criteria such as AIC. 



Throughout this research, we used the order m=3 in empirical analyses; this highest possible 

order is limited by the data resolution and supported by the AIC criterion in examining our 

empirical size-TL relationships.  

Conversely, we can use the size-TL relationship to predict the secondary structure of 

ISD. In eqn A.3,  
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, the parameters ib , can be substituted by the 

estimates of the ith order polynomial coefficients of the empirical size-TL relationship. Note 

that assigning any intercept, a, does not change our prediction on secondary structure. After 

simulating the ISD based on eqn A.3, we can extract the secondary structure from the 

residuals of the log ISD fitted by power-law. As a result, by following the above procedures, 

we can predict the secondary structure of ISD in log space by the empirical size-TL 

relationship.  
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