
Tail probabilities of extinction time in a large number of

experimental populations

Supplementary Materials: Appendix A

John M. Drake

1 Data summary

This supplement describes the statistical analysis of extinction times of 1,074 experimental populations
of Daphnia pulicaria. Code is contained in the file pulicaria.R.

The raw data are contained in table data.csv with the following columns:

1. Tube.ID – A unique identifier for each population

2. Block – Block number

3. Startno – The initial population size, either x0 = 3 or x0 = 18

4. Start – Date population was initialized

5. End – Date population was scored extinct

6. Days – Duration of population persistence (extinction time) in days, i.e., End− Start

7. Tetracycline – Indicator for tetracycline addition (0: No, 1: Yes)

A total of n = 1080 populations were initialized, of which 6 were accidentally destroyed (indicated
by Days = −9999) yielding a total experiment size of n = 1, 074. Three additional populations were
right-censored with the censoring time treated as the extinction time. This introduces a very small bias
to the regression models and estimated extinction time. For right-censored populations, the extinction
time (if it were observed) would be greater than the recorded time, placing the population more to
the extreme of the distribution. Thus, censoring bias decreases the mass in the tail and cannot lead
to spurious conclusion of power laws when distributions are truly exponential. Extinction time ranged
from 1 day to 1239 days with a mean of 123.88 days (sd: 122.38) and median 87 days. The tail of
the distribution is observed in the histogram of extinction times, shown on both log and original scales
(Fig. A1). Variation among blocks is evident in histograms for each block (Fig. A2) and their empirical
cumulative distributions (Fig. A3). Finally, the the mean, median, excess kurtosis (fourth standardized
moment minus 3), skewness, variance and coefficient of variation were calculated for each block (Table 1,
Fig. A4). Excess kurtosis and skewness were estimated using the moments package in R (R Development
Core Team, 2011). Mean excess kurtosis was found to be 88.3 (sd: 41.5), i.e., extinction times were
highly peaked compared with a Gaussian distribution where the excess kurtosis is 0. Estimated mean
skewness was 8.5 (sd: 8.5), greater than 0 as expected.
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Figure A1: Histograms of extinction time (left) and log (extinction time) for all populations pooled.
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Figure A2: Histograms of extinction time by block.
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Figure A3: Empirical cumulative distribution of extinction time by block.

2 Effects of tetracycline and initial population size treatments

Some experimental blocks (Blocks 13 and 15) received an additional treatment (+tetracycline) and all
blocks received treatments of initial poplation size (very nearly balanced in the final data set). Sample
sizes are shown in Table 2.

I tested for effects of tetracycline and initial population size treatments on log extinction time with four
mixed effects models, fit by maximum likelihood using the lme4 package (Bates et al., 2011).

• Model 1. Main effects of tetracyline and initial population size with random intercept for block

• Model 2. Effect of tetracycline with random intercept for block

• Model 3. Effect of initial population size with random intercept for block

• Model 4. Random intercept for block only

Analysis of variance and comparison of AIC values both show Model 1, the most complex model, to be
best supported by the data (Table 3). This model has fixed effects for both treatments. Markov Chain
Monte Carlo samples were generated to obtain empirical 95% confidence intervals (highest posterior
density interval), which demonstrate statistical significance borth for tetracycline (95% CI: -1.11, -0.17)
and initial population size (95% CI: 0.01, 0.02). To determine if the random effect of block is warranted,
I fit a simple fixed effects model (i.e. anaysis of variance) which has a greater AIC by a difference of
ΔAIC = 296.72. This indicates that the estimated random effects among blocks are indeed real. Analysis
of residuals and comparison of predicted and observed values do not indicate any structural problem
with this model. The dashed line in the top left panel is the one-to-one-line (Fig. A5).
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Figure A4: Summary statistics of extinction time by block.
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Figure A5: Regression diagnostics for mixed effects model of experimental treatments.
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Table A1: Summary statistics of extinction time by block. Boxplots show interquartile range; whiskers
extend to the most extreme points within a distance of 1.5 times the interquartile range. Note the
logarithmic axis on extinction time plot.

Block Mean Median Excess kurtosis Skewness Variance Coefficient of variation
1 255.09 183.00 7.59 2.91 48605.83 0.86
2 188.45 170.50 4.17 1.43 9730.55 0.52
3 78.08 60.00 0.44 1.25 1673.56 0.52
4 91.23 58.00 3.46 1.86 3996.08 0.69
5 70.64 65.00 19.92 3.66 940.64 0.43
6 63.35 54.00 6.25 2.34 743.82 0.43
7 130.00 97.50 11.93 3.57 16646.21 0.99
8 77.28 56.50 26.49 5.06 6429.90 1.04
9 80.15 69.00 0.20 1.04 1097.98 0.41
10 76.65 73.00 0.01 0.95 613.67 0.32
11 81.00 78.00 -0.13 0.64 416.87 0.25
12 89.11 75.00 19.88 4.13 3278.81 0.64
13 165.13 27.00 0.61 1.26 42212.75 1.24
14 93.95 77.00 9.64 3.20 4138.54 0.68
15 82.34 56.50 -0.13 1.06 7308.18 1.04
16 122.00 98.00 2.17 1.58 7221.79 0.70
17 135.22 94.50 20.56 4.33 23290.79 1.13
18 108.80 94.50 14.49 3.48 3080.88 0.51
19 128.68 111.00 5.13 2.24 4013.05 0.49
20 87.60 80.00 19.79 4.10 1048.19 0.37
21 200.20 176.00 5.24 2.11 12317.39 0.55

In conclusion, these results provide evidence for effects of both initial population size and tetracycline
addition on extinction time. These are not, however, expected to influence the tail probabilities (as
will be statistically demonstrated below) for the following reasons. In the case of initial population
size, any effects are quickly eroded as the majority of populations achieve quasi-stationarity (i.e., stable
fluctuations around the long term mean, at which point any memory of the initial condition is lost)
(Drake et al., 2011). Those populations that do not reach quasi-stationarity, i.e., those populations that
caused the detected treatment effect, reach extinction extremely quickly and therefore are not included
in the set of populations making up the tail. In the case of tetracycline, the treatment was applied
uniformly within blocks 13 and 15. Thus, since distributions were fit to each block separately (see
below), any effect of the tetracycline treatments would apply to the block as a whole. If the addition
of tetracyline would qualitatively change the shape of the extinction time distribution, this would be
evident in the table of results by block.

3 Estimating tail probabilities

I used the methods of Clauset et al. (Clauset et al., 2009) to estimate functions describing distribu-
tion tails for each block. Standard models for extinction in a stationary environment imply that the
distribution of extinction times should be exponential in the tails. Alternative distributions could arise
in a non-stationary environment or because extinction modes are mixed in heterogeneous populations.
If the system is in the vicinity of a critical point, the extinction time might be a power law. My goal
was to compare a discrete power law (zeta distribution), a discrete power law with exponential cutoff,
a fat-tailed distribution that was not a power law (Weibull distribution), and “exponential” tails (geo-
metric distribution). Models were fit using code from (Clauset et al., 2009) in R v 3.02 (R Development
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Table A2: Number of experimental populations by block and treatment.

Tetracycline 0 1
Startno 3 18 3 18

Block
1 60 60 0 0
2 40 40 0 0
3 40 40 0 0
4 19 20 0 0
5 40 40 0 0
6 20 20 0 0
7 20 20 0 0
8 20 20 0 0
9 20 20 0 0
10 20 20 0 0
11 20 20 0 0
12 40 40 0 0
13 0 0 20 19
14 20 18 0 0
15 0 0 18 20
16 20 20 0 0
17 20 20 0 0
18 20 20 0 0
19 20 20 0 0
20 20 20 0 0
21 20 20 0 0

Table A3: ANOVA table for estimated treatment effects in four linear mixed effects models

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
Model4 3 2099.61 2114.55 -1046.81
Model2 4 2095.94 2115.85 -1043.97 5.68 1 0.0172
Model3 4 2040.04 2059.96 -1016.02 55.90 0 0.0000
Model1 5 2036.33 2061.22 -1013.16 5.71 1 0.0168

Core Team, 2011). Given the significance of the random effects in the preceding analysis and visually
verifiable variation among blocks in Fig. A2, models were fit separately for each block and results were
pooled for statistical inference. Following Clauset et al. (Clauset et al., 2007), I first fit the threshold
parameter and then fit the tails to all times greater than or equal to the fit threshold. I compared model
fits using AICc. I found the optimization routine used by Clauset et al. occasionally to fail for the
Weibull distribution (specifically for Blocks 8 and 14) due to numerical problems at small trial values of
the shape parameter. To get around this problem, the shape and scale parameters (which both must be
positive) were passed as the logarithm of their traditional values. As Fig. 3 shows, in the majority of
blocks that can be fit both ways the results of the two approaches are equivalent. In 4 cases, the logged
version actually returns a parameterization yielding a slightly higher likelihood (in one case higher by
about 1.2 log-likelihoods). Using the version involving logged parameters, I therefore fit the four models,
retaining the log-likelihood, and calculating AICc. The results, by block, are shown in Table 4. The
total statistical support for each of the four distributions may be obtained by summing AICc over blocks
for each model (Table 5).

This analysis leads to the conclusion that the power law is strongly supported overall and individually
is best supported in 11 out of 21 blocks. The exponential distribution is most weakly supported overall,
with a difference ΔAIC = 98.95, although it was (marginally) best supported in 8 out of 21 blocks. The
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Table A4: Statistical fit of tail extinction times, by block, to four models. Third column is the number
of observations in the tail (exceeding the cutoff). Column 4 is the fit exponent of the zeta (power law)
distribution. Columns 5-8 are AIC values for the candidate distributions

Block Threshold n Power α Power/cutoff Weibull Exponential
1 138 115 1289.37 3.2 1291.44 1291.70 1339.12
2 135 72 756.02 3.8 757.48 757.62 759.60
3 41 79 738.13 2.8 734.95 735.48 735.08
4 113 12 125.70 3.6 127.27 127.28 124.40
5 49 71 611.60 3.6 608.75 608.50 606.66
6 58 14 127.23 3.6 129.29 129.32 126.61
7 73 35 350.61 3.2 352.87 352.94 367.00
8 43 38 335.36 3.2 337.59 337.65 351.83
9 49 35 330.57 3.0 326.19 325.98 324.37
10 55 35 303.74 3.8 302.68 302.53 300.53
11 62 34 292.21 4.2 288.50 285.49 286.97
12 60 69 621.46 3.7 623.58 623.55 633.49
13 191 16 200.77 2.8 202.07 202.21 199.67
14 61 36 321.71 3.8 323.96 324.05 332.79
15 48 22 246.57 2.2 244.25 244.38 241.96
16 99 20 214.15 3.1 216.29 216.49 215.53
17 69 33 347.41 2.8 349.66 349.70 360.72
18 76 34 318.88 3.8 321.01 320.98 321.71
19 85 36 353.65 3.6 355.56 355.64 355.98
20 64 37 318.96 4.2 320.03 319.79 318.01
21 150 27 299.50 3.5 301.38 301.47 300.52

Table A5: Total statistical support (summed AIC) for four models of tail extinction probabilities.

AIC
Power 8503.61

Power cutoff 8514.80
Weibull 8512.74

Exponential 8602.56

power law with exponential cutoff and Weibull distribution were best supported each for only one block.

4 Effect of experimental treatments on tail distribution

Above it was argued that the initial population size treatment, despite its statistical significance, should
not affect the shape of the estimated extinction time distribution. I tested that claim by fitting the
distributions separately for each Block × x0 combination and calculating AICc.

The x0 = 3 treatment for Block 13 has only two records in the tail (and therefore cannot be used to
estimate the two-parameter models and renders AICc for the remaining two models undefined). It is
therefore excluded from further consideration. Tabulating the results separately for the x0 = 3 and
x0 = 18 treatments and summing AICc values enables one to determine if the different treatments
yielded qualitatively different patterns in the tail extinction probabilities. Results are shown by block in
Table 6. Clearly, even when models are fit separately for the two treatments (initial condition of x0 = 3
vs. x0 = 18), the power-law is preferred (Table 7). These results therefore indicate that there is no effect
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of initial population size on the shape of the extinction time tail and underscore the main conclusion
that extinction times in this experiment followed a power law distribution.
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Figure A6: In the majority of blocks that can be fit both ways (all blocks except 8 and 14) the results
of the two optimization approaches are equivalent. In 4 cases, the logged version actually returns a
parameterization yielding a higher likelihood (in one case higher by about 1.2 log-likelihoods).
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Table A6: Statistical fit of tail extinction times, by block-treatment combinations, to four models.

Block/x(0) Threshold x(0) n Power Power/cutoff Weibull Exponential
1 3 145 3 59 684.88 687.03 687.22 716.52
1 18 138 18 56 590.07 592.22 592.32 605.38
2 3 199 3 9 106.21 109.30 109.33 106.02
2 18 151 18 29 314.29 315.53 315.62 313.56
3 3 43 3 38 316.08 317.67 317.80 317.01
3 18 41 18 40 403.89 399.19 399.26 397.04
4 3 48 3 19 128.46 130.98 130.98 129.38
4 18 129 18 10 102.49 105.34 105.35 102.17
5 3 47 3 33 274.33 268.73 262.43 267.57
5 18 54 18 36 314.89 316.77 316.70 316.63
6 3 62 3 4 38.76 50.06 49.46 38.14
6 18 52 18 12 108.13 110.90 110.98 108.69
7 3 68 3 16 146.17 148.43 148.45 146.11
7 18 76 18 20 213.05 215.53 215.57 223.35
8 3 41 3 20 182.93 185.41 185.44 194.93
8 18 42 18 20 172.26 174.60 174.66 174.13
9 3 49 3 17 151.59 153.68 153.77 151.60
9 18 46 18 20 197.57 193.15 192.01 191.58
10 3 47 3 20 160.74 163.06 163.08 161.34
10 18 69 18 17 145.84 146.11 145.19 143.77
11 3 55 3 19 164.33 163.28 161.64 161.21
11 18 62 18 19 165.26 164.96 164.02 162.75
12 3 68 3 34 317.79 320.04 320.05 323.61
12 18 51 18 39 337.62 339.58 339.03 340.27
13 3 15 3 2 Inf 3.47 3.48 Inf
13 18 191 18 16 200.77 202.07 202.21 199.67
14 3 61 3 20 181.23 183.72 183.77 188.35
14 18 61 18 16 142.84 145.48 145.50 146.65
15 3 8 3 17 112.45 114.98 115.09 119.30
15 18 48 18 20 229.19 225.79 225.69 223.31
16 3 81 3 17 179.81 182.23 182.38 182.24
16 18 97 18 11 107.90 110.96 110.98 110.13
17 3 72 3 17 174.04 175.64 175.74 173.39
17 18 59 18 18 195.24 197.78 197.82 206.53
18 3 70 3 20 185.28 186.16 186.16 183.68
18 18 80 18 15 146.86 149.54 149.55 149.37
19 3 85 3 17 166.07 168.65 168.65 168.40
19 18 86 18 19 188.77 190.90 191.02 189.19
20 3 64 3 19 159.92 159.55 157.81 157.37
20 18 64 18 18 161.04 163.45 163.34 161.87
21 3 121 3 16 162.39 163.85 163.82 161.22
21 18 150 18 17 197.93 199.88 200.01 198.02

Table A7: Total statistical support (summed AIC) for four models of tail extinction probabilities for two
initial population sizes.

Power Power/cutoff Weibull Exponential
x(0)=3 3993.46 4032.42 4023.08 4047.42

x(0)=18 4635.88 4659.73 4656.83 4664.06
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