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APPENDIX A: Details of ORDMS modeling, and estimates for survival and within-season 
parameters.  

 

Description of open robust design multi-state models 

We used open robust design multi-state (ORDMS) models (Kendall and Bjorkland 2001, 

Kendall 2004) to investigate patterns of variation in survival rates, recruitment rates, and rates of 

temporary emigration (TE) of juvenile Weddell seals. ORDMS models are based on observations 

from multiple secondary (within-primary-season) sampling occasions over multiple primary 

occasions (typically years). These models provide estimates for five types of parameters. 

Apparent survival (𝑆𝑆𝑟𝑟), hereafter survival, is the probability for state r of surviving and not 

permanently emigrating;  𝜓𝜓𝑡𝑡𝑟𝑟𝑟𝑟 is the probability, given survival, that an individual will make a 

transition between state r to state z at the beginning of year t . Survival and transition 

probabilities can be age-dependent or vary by year or birth cohort. For a given primary period t, 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑟𝑟  is the probability that an individual in state r is a new arrival to the study area in 

secondary occasion j; 𝑝𝑝𝑡𝑡𝑡𝑡𝑟𝑟  is the probability of detection for individuals in state r during 

secondary occasion j, given it is available; and 𝜙𝜙𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟  is probability that individuals of state r will 

stay in the study area between secondary occasions j and j + 1, given that they entered k 

secondary occasions prior. Note that 𝜙𝜙 defined this way is different from its usage in other 

capture-mark-recapture models such as the Cormack-Jolly-Seber model (Williams et al. 2002). 

Individuals are assumed to enter the population once and leave during a primary period, and the 

probability that an individual enters the study area and leaves again between secondary capture 

occasions is assumed to be zero (Kendall and Bjorkland 2001).  In this study, secondary 
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occasions included intensive, study-area-wide surveys separated by 3 – 6 days, as well as the 2 – 

3 days of less-intensive observation effort preceding and following each intensive survey. 

Consequently, and also because most individuals were observed >1 time, we believe that 

violation of the above assumption likely was minimal.  

Modeling transition probabilities 

We defined 7 possible breeding state classifications (Fig. A1): P0 (pup); U0 (unobservable 

prebreeder, never previously observed in Erebus Bay subsequent to birth); P1 (first-time 

observable prebreeder); U1 (unobservable prebreeder, previously observed once); P2 (observable 

prebreeder, previously observed ≥1 time); U2 (unobservable prebreeder, previously observed >1 

time); and F (observable first-time mom). Temporary emigration was defined as any transition 

into any unobservable state (𝜓𝜓P0U0, 𝜓𝜓U0U0, 𝜓𝜓P1U1, 𝜓𝜓U1U1, 𝜓𝜓P2U2, 𝜓𝜓U2U2) and recruitment as 

any transition into state F (𝜓𝜓U0F, 𝜓𝜓P1F, 𝜓𝜓U1F, 𝜓𝜓P2F, 𝜓𝜓U2F). We fixed to zero all transition 

probabilities that were either biologically impossible or not allowed because encounter histories 

were right-censored after recruitment (these are not represented by arrows in Fig. A1). Because 

the probabilities of all possible transitions for any given state logically must sum to 1, one 

transition rate for each state must be derived by subtraction (e.g., 𝜓𝜓P2P2 + 𝜓𝜓P2U2 +  𝜓𝜓P2F = 1; 

thus if 𝜓𝜓P2U2 and 𝜓𝜓P2F are estimated, 𝜓𝜓P2P2 = 1 − (𝜓𝜓P2U2 + 𝜓𝜓P2F) for a given age and time 

period). Our choice of which transition rates to estimate directly was made so that our competing 

models focused on testing hypotheses about 2 types of transitions: into an unobservable state 

(TE) and into a breeding state (recruitment). Our goal was to investigate variation in vital rates of 

prebreeders, so we right-censored information for seals that recruited and did not estimate rates 

for seals originating in state F. Such censoring simplified the analysis by limiting the number of 
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possible state transitions to be estimated and was justified by the nearly certain detection of 

mothers within the Erebus Bay study area (Rotella et al. 2009, Stauffer et al. 2013a).  

 

 

 

 

FIG. A1. Breeding state classifications and possible state transitions for a population of female 

Weddell seals in Erebus Bay, McMurdo Sound, Antarctica. States denote first-time breeders (F) 

and either observable (P) or unobservable (U) prebreeders that previously have attended Erebus 

Bay reproductive colonies 0, 1, or ≥2 times since they were pups (state P0). Solid lines and 

dashed lines represent, respectively, recruitment (gray is recruitment from an unobservable state) 

and temporary emigration. Dotted lines indicate transitions into observable prebreeding states 

that were not estimated in our models but can be derived by subtraction. 
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In some models, we estimated TE rates with a different Markovian (dependent on prior 

state) structure than the structure for recruitment. For example a design matrix might specify full 

state-dependency in recruitment estimates 𝜓𝜓U0F, 𝜓𝜓P1F, 𝜓𝜓U1F, 𝜓𝜓P2F, 𝜓𝜓U2F, and only partial 

state-dependency in TE estimates, 𝜓𝜓P1U1 = 𝜓𝜓P2U2 and 𝜓𝜓U0U0 = 𝜓𝜓U1U1 = 𝜓𝜓U2U2 (i.e., TE rates 

are only different depending on whether seals did or did not attend the study area the previous 

year – we used this Markovian structure for TE in all our models). However, because we used 

multinomial logit (mlogit) link functions to estimate beta parameters, full state dependency is 

induced in back-transformed real parameter TE estimates (i.e., 𝜓𝜓U0U0 ≠ 𝜓𝜓P1U1 ≠ 𝜓𝜓U1U1 ≠

𝜓𝜓P2U2 ≠ 𝜓𝜓U2U2). To see why this is the case, consider a simple contrived example with the beta 

parameters β0 = intercept for all transitions, β1 = common offset for 𝜓𝜓P1U1 and 𝜓𝜓P2U2, β2 = offset 

for 𝜓𝜓P1F, and β3 = offset for 𝜓𝜓P2F (i.e., TE, but not recruitment, are constrained to be equal for 

states P1 and P2). Use of mlogit links to back-transform to real parameter TE estimates yields 

𝜓𝜓P1U1 = 𝑒𝑒𝛽𝛽0+𝛽𝛽1

1+𝑒𝑒𝛽𝛽0+𝛽𝛽1+𝑒𝑒𝛽𝛽0+𝛽𝛽2
 and 𝜓𝜓P2U2 = 𝑒𝑒𝛽𝛽0+𝛽𝛽1

1+𝑒𝑒𝛽𝛽0+𝛽𝛽1+𝑒𝑒𝛽𝛽0+𝛽𝛽3
. The denominators in the 2 back-

transformations are different because of state specificity in recruitment rates. Consequently, 

differences are induced in the real parameter estimates for TE despite the fact that the design 

matrix rows are identical for these two parameters. This issue of induced state-dependency can 

be avoided if logit rather than mlogit link functions are used to specify transition parameters, but 

mlogit links often are necessary for parameter estimates to converge to the MLE. We used mlogit 

links and simply recognized that for some models, slight state-dependent differences in real 

parameter TE estimates are an artifact of analogous state-dependency in parameter estimates for 

recruitment. 
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Modeling survival probabilities 

Based on strong model support from previous analyses, we considered a single structure for 

survival and for each of the within-season parameters (Hadley et al. 2006, Stauffer et al. 2013b). 

We estimated survival 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑎𝑎𝑎𝑎𝑎𝑎
𝑐𝑐  as a function of age class (age = 1,2,3+, for consistency with 

notation used for transition rates, age denotes age at the end of the survival interval) and current-

year winter SIE (standardized and centered) in year t–1, with an additional transient effect of 

birth-cohort (c  = 1983 – 2009). As in previous analyses, we expected survival rate would be 

positively related to SIE (Stauffer et al. 2013b). Because hypotheses about state-dependent 

survival of females in an unobservable state cannot be evaluated on the basis of model selection 

(Bailey et al. 2010), we assumed equal survival for prebreeders in all states. Previous analysis 

suggests that biases in survival estimates because of non-random TE were minimal for this 

population of Weddell seals when TE was modeled as time-invariant (Hadley et al. 2007). 

However, TE can cause substantial negative bias in survival estimates at the end of a time-series 

when survival and state-dependent TE rates are both temporally variable (Langtimm 2009). 

Consequently, we do not present survival estimates for the final 4 cohorts of our time series 

(2006 – 2009) or transition probabilities for the final year.  

Modeling within-year probabilities 

We modeled within-season parameters based on overall patterns observed in previous 

analyses of individual years (Rotella et al. 2009). In those analyses we found that the model 

performing best varied by year, but point estimates were similar across years, with uniformly 

high point estimates for  𝑝𝑝𝑡𝑡𝑡𝑡𝑟𝑟  and 𝜙𝜙𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟 , and estimate 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑟𝑟  generally low and decreasing for 

breeders but increasing slightly for prebreeders (i.e., most individuals present at the first survey 

period each year). We therefore allowed 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟  to follow a state-dependent (states P1 and P2 
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pooled, P0 and F pooled) linear trend for j >1 (trend common for all seasons). Breeders and pups 

were pooled because in most cases pups were present the first time we encountered breeders 

during a season. For the first encounter occasion each year, we derived 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡0𝑟𝑟 = 1 −

∑ 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗=2 . Detection probability 𝑝𝑝𝑡𝑡𝑡𝑡𝑟𝑟  also was allowed to follow a year-constant and state-

dependent linear trend (states P0 = P1 = P2, and F). We allowed 𝜙𝜙𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟  to vary only by state (P0 = 

P1 = P2, and F). All within-season parameters were fixed to zero for all unobservable states. The 

probability that an individual would be detected at least once in a primary occasion (𝑝𝑝𝑡𝑡𝑟𝑟∗) can be 

derived from the secondary occasion-specific parameters (Kendall and Bjorkland 2001). For 

example, for a year with 3 secondary occasions: 

𝑝𝑝𝑡𝑡𝑟𝑟∗ = 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡1𝑟𝑟 [𝑝𝑝𝑡𝑡1𝑟𝑟 + (1 − 𝑝𝑝𝑡𝑡1𝑟𝑟 )𝜙𝜙𝑡𝑡10𝑟𝑟 𝑝𝑝𝑡𝑡2𝑟𝑟 + (1 − 𝑝𝑝𝑡𝑡1𝑟𝑟 )𝜙𝜙𝑡𝑡10𝑟𝑟 (1 − 𝑝𝑝𝑡𝑡2𝑟𝑟 )𝜙𝜙𝑡𝑡21𝑟𝑟 𝑝𝑝𝑡𝑡3𝑟𝑟 ]
+𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡2𝑟𝑟 [𝑝𝑝𝑡𝑡2𝑟𝑟 + (1 − 𝑝𝑝𝑡𝑡2𝑟𝑟 )𝜙𝜙𝑡𝑡20𝑟𝑟 𝑝𝑝𝑡𝑡3𝑟𝑟 ]
+𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡3𝑟𝑟 𝑝𝑝𝑡𝑡3𝑟𝑟

 

Goodness of fit 

We performed analyses in program MARK (White and Burnham 1999) through the 

RMark package (Laake 2013) in program R (R Development Core Team 2012). Currently 

there is no general goodness-of-fit (GOF) test for the type of ORDMS models we used in our 

analysis, and the median 𝑐̂𝑐 procedure implemented into program MARK is not available for 

robust design data. It may be possible to conduct GOF testing for ORDMS models by 

combining GOF tests for individual years and a GOF test (e.g., median 𝑐̂𝑐) for pooled data 

across years, this approach is ad-hoc and unproven. Instead, we assessed the potential 

influence of overdispersion on model-selection results by examining how model rankings 

based on QAICc changed as we increased 𝑐̂𝑐. As expected, point estimated did not change 

much, but uncertainty in estimates increased with increasing 𝑐̂𝑐. However, model rankings 

were robust to increases in 𝑐̂𝑐 values (Table B1). Therefore, although we acknowledge that 
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modest amounts of overdispersion would reduce the precision of our estimates, we are 

confident that our conclusions would be minimally influenced. 

Multiple imputation of missing covariate data 

Images from which to derive a value for the DIST covariate were missing for the years 

1983, 1985, 1987, 1990, 1991, 1993, 1997, and 1999. For initial model selection, we replaced 

missing values with the mean of non-missing values. We then used multiple imputation methods 

(Schafer 1999) to make inferences based on the top-ranked covariate model (model 9, see Table 

B1). We used the R package norm (Schafer 2012) to impute values for missing DIST data based 

on correlations with the annual sea-ice concentration in McMurdo Sound and the distance from 

the ice edge to McMurdo Station traveled by a resupply vessel each year. The norm package 

assumes a multivariate normal distribution and uses an MCMC data augmentation algorithm 

(Tanner and Wong 1987) to impute missing values, which can be interpreted as random draws 

from a posterior distribution of possible values. Multiple imputation accounts for missing value 

uncertainty through the generation and analysis of m independent datasets followed by inference 

based on a combination of these analyses (Schafer 1999). Rubin (1987) showed that m = 3–5 

usually is sufficient to account for most of the missing value uncertainty. We therefore generated 

5 imputed datasets and analyzed each dataset in program MARK (White and Burnham 1999), 

using our top-ranked model structure. With m = 5, we calculated beta estimates 𝜃𝜃�𝑚𝑚 based on the 

recommendations by Rubin (1987) where  𝜃𝜃�𝑚𝑚 = 1
𝑚𝑚
∑ 𝜃𝜃�𝑖𝑖𝑚𝑚
𝑖𝑖=1  and 𝑣𝑣𝑣𝑣𝑣𝑣�𝜃𝜃�𝑚𝑚� = 𝑉𝑉� + �1 + 1

𝑚𝑚
�𝐵𝐵, and 

where 𝑉𝑉� = 1
𝑚𝑚
∑ 𝑣𝑣𝑣𝑣𝑣𝑣�𝜃𝜃�𝑖𝑖  �𝑚𝑚
𝑖𝑖=1  represents the within-imputation variance and 𝐵𝐵 =

� 1
𝑚𝑚−1

�∑ �𝜃𝜃�𝑚𝑚 − 𝜃𝜃�𝑖𝑖�𝑚𝑚
𝑖𝑖=1  represents the between-imputation variance. We also used the R package 

RMark (Laake 2013) to calculate model-averaged estimates for real parameters from analysis of 

the 5 imputed datasets, based on a reasonable range of covariate values. We used these values for 
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comparison with estimates from baseline models with either unstructured or no annual variation 

in TE rates.  

Results for survival and within-year modeling 

Cohort-specific survival estimates (Fig. A2) for cohorts born in 1983 – 2005 were greater 

for seals ≥2 years (𝑆̂𝑆𝑆̅𝑆𝑆𝑆𝑆𝑆,𝑎𝑎𝑎𝑎𝑎𝑎3+
𝑐𝑐  = 0.92,  𝑆𝑆𝑆𝑆����� = 0.01) than for pups (𝑆̂𝑆𝑆̅𝑆𝑆𝑆𝑆𝑆,𝑎𝑎𝑎𝑎𝑎𝑎1

𝑐𝑐  = 0.72, 𝑆𝑆𝑆𝑆����� = 0.12) and 

yearlings (𝑆̂𝑆𝑆̅𝑆𝑆𝑆𝑆𝑆,𝑎𝑎𝑎𝑎𝑎𝑎2
𝑐𝑐  = 0.50,  𝑆𝑆𝑆𝑆����� = 0.09), for which 95% CIs of point estimates overlapped 

broadly. We found evidence that current-year sea-ice extent was positively associated with 

survival (𝛽̂𝛽SIE = 0.15, 𝑆𝑆𝑆𝑆 �  = 0.08; Fig. A2b). 

 

 

FIG. A2. Estimated survival probabilities (a) from our baseline year model (model 21, Table S1) 

for 1st, 2nd, and 3rd-year of life, and predicted survival probabilities (b) for “weak”, “average”, 

and “strong” cohorts when current-year winter sea-ice extent in the Ross Sea is minimal, 

average, or maximal. Error bars indicate 95% confidence intervals. 

 

 

Based on estimates from our baseline year model the majority of female seals were present at the 

first survey each year ( 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�������𝑡𝑡1P0 and F = 0.83,  𝑆𝑆𝑆𝑆�  = 0.01; 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�������𝑡𝑡1P1 and P2 = 0.63, 𝑆𝑆𝑆𝑆�  = 0.03). For pups and 
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breeders, estimated 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑡𝑡𝑡𝑡
𝑟𝑟  decreased rapidly during the primary period (Fig. A3) from 0.11 (𝑆𝑆𝑆𝑆�  < 0.01) 

to <0.01 (𝑆𝑆𝑆𝑆�  < 0.01), whereas rates for prebreeders were essentially constant throughout the season 

(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�������P1 and P2 = 0.06, 𝑆𝑆𝑆𝑆�  = 0.01). After entering the study area each year, seals in each state were likely 

to remain until the next secondary occasion (𝜙𝜙�.
P0 = 0.98, 𝑆𝑆𝑆𝑆�  < 0.01; 𝜙𝜙�.

P1 and P2 = 0.94, 𝑆𝑆𝑆𝑆�  < 0.01; 𝜙𝜙�.
F = 

0.98, 𝑆𝑆𝑆𝑆�  < 0.01). For pups and breeders, 𝑝̂𝑝𝑡𝑡𝑡𝑡𝑟𝑟  was high early in the season and decreased throughout the 

season, whereas for prebreeders, 𝑝̂𝑝𝑡𝑡𝑡𝑡𝑟𝑟  increased throughout the season (Fig. A3). We detected nearly all 

seals that entered the study area (Table A1).  

 

 

 

 

FIG. A3. For an example year with 8 secondary occasions, (a) secondary survey-specific entry 

probabilities, and (b) detection probabilities. Note differing y-scales. The first entry probability is 

derived as 1 minus the sum of the rest of the probabilities and represents the probability of 

presence at the beginning of the primary survey period. Error bars represent 95% confidence 

intervals.  
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TABLE A1. Probability of detection of female Weddell seals during ≥1 secondary occasions within 

a primary period (𝑝̂𝑝𝑡𝑡𝑟𝑟∗) for primary periods with 5–8 secondary periods.  

 5 secondary  

occasions 

 6 secondary  

occasions 

 7 secondary  

occasions 

 8 secondary  

occasions 

 𝑝̂𝑝𝑡𝑡𝑟𝑟∗ 𝑆𝑆𝑆𝑆�   𝑝̂𝑝𝑡𝑡𝑟𝑟∗ 𝑆𝑆𝑆𝑆�   𝑝̂𝑝𝑡𝑡𝑟𝑟∗ 𝑆𝑆𝑆𝑆�   𝑝̂𝑝𝑡𝑡𝑟𝑟∗ 𝑆𝑆𝑆𝑆�  

pups >0.99 <0.01  >0.99 <0.01  >0.99 <0.01  >0.99 <0.01 

prebreeders 0.91 <0.01  0.92 <0.01  0.93 <0.01  0.94 <0.01 

breeders >0.99 <0.01  >0.99 <0.01  >0.99 <0.01  >0.99 <0.01 
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