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Appendix B.  Computational details and method validation. 

Markov chain Monte Carlo optimization 

Overview of Markov chain - Monte Carlo (MCMC) methods can be found elsewhere 

(Gilks et al. 1996, Lele et al. 2007, White et al. 2008).  In short, MCMC is a family of 

approaches for simulating a posterior distribution of interest when calculating the posterior 

directly is not feasible.  In particular, applying Bayes' rule to calculate the posterior for a high-

dimension problem (i.e., many parameters) requires calculating an integral over that high-

dimension parameter space, and MCMC provides an efficient shortcut around that integration 

step.  Because it simulates the posterior directly, it can be more flexible than maximum 

likelihood approaches that rely on particular assumptions about the shape of a likelihood surface. 

We used the Metropolis algorithm (Gilks et al. 1996) to create a Markov chain of 

parameter values that approximate the posterior distribution Pr(θ, k | ni,t, ni+1,t).  Briefly, the 

Metropolis algorithm operates as follows: given data D and an estimate of parameter values Ξm = 

(k, θ) representing the mth
 entry in the Markov chain, sample new candidate parameter values Ξ' 

from the proposal distribution Q(Y).  Then calculate the likelihoods L(D| Ξ') and L(D| Ξm) and 

the priors π(Ξ’) and π (Ξm).  Assuming a symmetrical proposal distribution (which we used, see 

next paragraph), the candidate values Ξ' are accepted with probability p that is equal to the ratio 

of the posteriors: p = min[1, π (D|Ξ')/ π (D|Ξm)] (this is the Metropolis rule).  If Ξ' is accepted, 

it becomes entry Ξm+1 in the Markov chain; if it is not accepted, the chain does not move and 



Ξm+1 = Ξm.  Given an arbitrary set of starting parameter values, the algorithm will eventually 

converge on a solution in which it consistently draws new values of Ξ from the posterior 

distribution of Ξ.  After M iterations, the first b iterations are discarded (the 'burn-in' containing 

the approach to convergence) and every cth element of the remaining chain is saved (c is the 

thinning interval); those values of Ξ are used as an estimate of the posterior.   

Both model parameters (k and θ) are biologically constrained to be positive real numbers, 

and could in theory take on values that span several orders of magnitude.  Therefore we found it 

more efficient to estimate the posterior distributions of log10 k and log10 θ, exponentiating the 

parameter values as necessary to perform the VLT calculations during MCMC.  Lacking reliable 

prior information on the distribution of log10 k and log10 θ (in part because of possible 

deficiencies in earlier mortality estimates), we used noninformative normal priors for both 

parameters: N(0, 1×104) and N(-1, 1×104), for log10 k and log10 θ, respectively. 

We used a one-at-a-time Metropolis algorithm in which only one element of Ξ (i.e., one 

parameter value) was altered in each iteration.  The proposal distribution Q(Ξm) was a symmetric 

normal distribution with mean Ξm and a coefficient of variation (cv) ranging from 2 to 0.1.  We 

used a delayed-rejection algorithm to improve mixing, so if candidate value Ξ' was not accepted, 

a new candidate value was generated from a proposal distribution with a smaller cv.  Each round 

of delayed rejection began with cv = 2 and stepped down exponentially from 2 to 0.1; if a 

candidate value was still not accepted then the chain did not move (Ξm+1 = Ξm) and the algorithm 

moved to the next step.   

We ran the algorithm for M = 5×104 iterations, discarded the first b = 103 as the burn-in, 

and used a thinning interval of c = 10 to avoid autocorrelation in the chain.  For each species we 

ran 3 duplicate chains using different starting values to ensure convergence on a common 



solution; starting values were generated as random draws from a normal distribution with 

standard deviation 0.5 and mean of 0.5 (for mortality rates θ) or 10 (for clumping parameter k).  

Chains were visually inspected for convergence; those that converged successfully were pooled 

to obtain estimate the posterior.  Trial and error suggested that these options produced desirable 

levels of mixing in the chains and that results were not sensitive to initial starting conditions.   

 
Likelihood calculation 
 

The MCMC algorithm requires calculation of the likelihood L(D|Ξ).  As mentioned above, 

we were unable to derive an analytical expression for L(ni,t, ni+1,t | θ, k).  In such cases, it is 

possible to use the method of implicit likelihood, in which one simulates the stochastic process 

assumed to underlie the data and uses the resulting distribution of random values as an 

approximation of the desired probability distribution (Diggle and Gratton 1984, Marjoram et al. 

2003).  In this case, we independently simulated random values for the abundance of each stage, 

ni,t
* and ni+1,t

* (where the asterisk indicates simulated data) for particular values of k and θ, then 

used the ratio of those simulated values to approximate the distribution of  the ratio ni,t
*/ni+1,t

*.   

To do this, we generated 104 random values of ni,t
* from a negative binomial distribution with 

overdispersion parameter k and an expected value (parameter m in Eq. 6) given by Eq. (1).  We 

generated the same number of values of ni+1,t
* in the same way, but using the expected value 

given by Eq. (3).  We then took the ratio of each pair of ni,t
* and ni+1,t

* values to obtain 104 

estimates of ni,t
*/ni+1,t

*.  In simulating these values we assumed that i = 1; because we take the 

ratio ni,t
*/ni+1,t

*, the result is not sensitive to this choice of dummy value.  The standard approach 

to calculating implicit likelihoods involves using nonparametric kernel density estimation to 

approximate a smooth probability distribution from the distribution produced by stochastic 

simulation (Diggle and Gratton 1984).  We found that kernel density estimation was too 



computationally expensive to be feasible for the hundreds of thousands of likelihood calculations 

required by MCMC runs.  Instead, we grouped the ni,t
*/ni+1,t

* into 1000 equally spaced bins 

ranging from zero to the maximum observed value (in either the actual or simulated data) and 

used the proportion of observations in each bin divided by the bin width as the estimate of the 

probability density for that bin.  This procedure allowed us to estimate the likelihood of an 

observed ratio ni,t/ni+1,t given the approximate distribution ni,t
*/ni+1,t

* corresponding to particular 

estimates of the parameters k and θ  (and known values for i and i+1).  To obtain consistent 

results we performed 5 replicate simulations of the likelihood and took the average of those 

values as the likelihood of a particular value of θ and k. 

 

Validation using simulated data 

To check the validity of our estimation method, we tested it on a suite of simulated datasets 

with known values of k and θ.  We simulated four different larval life histories with two larval 

stages and either the same or different mortality rate in each stage (Table B1).   Each stage had a 

50-day duration, and recruitment to the first stage was 5×104 larvae day-1.  We simulated ten 

replicate datasets for each life history, then applied our estimation method to each dataset.  The 

results revealed that our method accurately estimated both k and θ for cases in which θ was 

constant across larval stages.  When θ varied, the method estimated an value in between that of 

the two stages (Fig. B1).  These estimates consistently outperformed estimates obtained using the 

original VLT method (Table B2), which were rarely close to the true value and had very large 

standard deviations, indicating broad confidence regions. 

 

Uncertainty in stage duration 



One possible uncertainty in our analysis is incorrect estimation of stage duration, αi.  

Although stage duration depends strongly on water temperature and we chose values based on 

studies from environments with similar temperatures to our field site, it is possible that the actual 

durations were a few days shorter or long.  To evaluate the potential impact of this uncertainty, 

we examine Eq [4] in the main text, which shows the relationship between θ, α, and the ratio of 

abundances of stages (the data used for calculation).   

ni,t/ni+1,t  = [exp(θiαi)-1]/[1 - exp(–θ i+1αi+1)].   

Assuming that adjacent stages have equal duration (which is true for most cases in our dataset), 

we can calculate the value of the stage abundance ratio for different values of θ  α (Fig. 

B2).  For relatively low values of q (e.g., ≤ 0.01 day-1) there is very little variation in the stage 

abundance ratio for a wide range of stage durations.  However, for higher mortality rates (e.g., > 

0.1 day-1), the abundance ratio is quite sensitive to the value of the stage duration.  Therefore the 

mortality rate estimates may be more sensitive to inaccurate duration data. To gauge this effect, 

we re-estimated the mortality rate for the scenario 2 simulated dataset (Table B1; mortality of 0.8 

day-1) with an actual stage duration of 5 days, but specifying an incorrect duration of either 3 

days or 7 days in the estimation procedure.  When the stage duration was under-estimated, the 

method still accurately estimated the mortality rate; when the stage duration was over-estimated, 

the mortality rates were slightly under-estimates (Fig. B3).  Thus even for a very high mortality 

rate, corresponding to highest sensitivity of the abundance ratio to inaccurate stage duration, 

mortality estimates were not wildly inaccurate.  Fortunately most of the estimated mortality rates 

in our study were ≤ 0.1 day-1
, so we have higher confidence in their robustness to incorrect 

estimates of stage duration.    
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TABLE B1.  Larval life histories used in simulated data. 
 

Scenario No. stages k θ 
1 2 0.4 0.3, 0.3 
2 2 0.4 0.8, 0.8 
3 2 0.4 0.8, 0.2 
4 2 0.4 0.2, 0.8 

 

 

  



TABLE B2.  Estimated mortality rates (including standard deviation and number of useable 

observations [out of 50]) for simulated datasets using original VLT method. 

Scenario Replicate Actual 
θ ays 

Estimated θ (SD) n 

1 1 0.3, 0.3 1.67 (1.84) 49 
1 2 0.3, 0.3 1.25 (1.86) 50 
1 3 0.3, 0.3 1.42 (2.07) 50 
1 4 0.3, 0.3 0.91 (1.05) 48 
1 5 0.3, 0.3 1.28 (1.89) 50 
1 6 0.3, 0.3 2.02 (1.98) 49 
1 7 0.3, 0.3 1.42 (1.93) 48 
1 8 0.3, 0.3 1.82 (2.42) 49 
1 9 0.3, 0.3 1.20 (1.38) 50 
1 10 0.3, 0.3 1.29 (1.67) 50 
2 1 0.8, 0.8 0.34 (0.87) 45 
2 2 0.8, 0.8 0.26 (0.70) 48 
2 3 0.8, 0.8 0.24 (0.64) 46 
2 4 0.8, 0.8 0.61 (1.21) 49 
2 5 0.8, 0.8 0.57 (1.23) 44 
2 6 0.8, 0.8 0.48 (1.19) 47 
2 7 0.8, 0.8 0.19 (0.37) 49 
2 8 0.8, 0.8 0.21 (0.65) 48 
2 9 0.8, 0.8 0.30 (0.99) 49 
2 10 0.8, 0.8 0.46 (1.39) 47 
3 1 0.8, 0.2 0.34 (0.59) 46 
3 2 0.8, 0.2 0.60 (1.06) 50 
3 3 0.8, 0.2 0.48 (1.13) 49 
3 4 0.8, 0.2 0.61 (1.23) 49 
3 5 0.8, 0.2 0.24 (0.72) 49 
3 6 0.8, 0.2 0.28 (0.73) 48 
3 7 0.8, 0.2 0.30 (0.51) 48 
3 8 0.8, 0.2 0.70 (1.42) 47 
3 9 0.8, 0.2 0.26 (0.56) 49 
3 10 0.8, 0.2 0.72 (1.45) 49 
4 1 0.2, 0.8 0.61 (1.29) 48 
4 2 0.2, 0.8 0.56 (0.99) 50 
4 3 0.2, 0.8 0.48 (0.93) 48 
4 4 0.2, 0.8 0.61 (1.22) 49 
4 5 0.2, 0.8 1.27 (1.93) 49 
4 6 0.2, 0.8 0.75 (1.67) 50 
4 7 0.2, 0.8 0.77 (1.29) 50 
4 8 0.2, 0.8 0.99 (1.53) 49 
4 9 0.2, 0.8 0.65 (0.96) 50 
4 10 0.2, 0.8 0.61 (1.17) 48 

 

  



 
 
 

 
FIG. B1.  Posterior estimates of (A) the clumping parameter k and (B) mortality rate θ for four 
simulated datasets.  Diamonds indicate posterior mean values estimated for each of the ten 
replicate datasets (error bars show 95% HPD intervals).  Horizontal bars show true estimates of 
each parameter.  In (B), true mortality rates for stages are indicated as red (early) and blue (late). 
 
  



 
 
FIG. B2.  Variation in the abundance ratio for a range of values of the mortality rate (θ, days-1) 
and the stage duration of adjacent stages i  and i+1, based on the relationship in Eq. [4]. 
 
  



 
 
FIG. B3. Posterior estimates of the (A) clumping parameter k and (B) mortality rate θ for the 
scenario 2 simulated dataset, when the correct stage duration of 5 days was mis-parameterized as 
either 3 days or 7 days.  Diamonds indicate posterior mean values estimated for each of  eight 
replicate datasets (error bars show 95% HPD intervals).  Horizontal bars show true estimates of 
each parameter.  In (B), true mortality rates for stages are indicated as red (early) and blue (late). 


