C Autocorrelation estimation

Autocorrelated kernel-density estimation is contingent upon being able to first estimate the
autocorrelation function (ACF, Eq. B.18) or, equivalently, the covariance and semi-variance
function (SVF, Eq. B.33). A spatially-constrained autocorrelation model must be fit to the
data and the data must suggest evidence of range-resident or territorial behavior. The first
step to determining whether or not home-range behavior has been observed is to visually
inspect the asymptotic behavior of the semi-variance function (SVF), as in Fig. C.1. The
SVF is defined as the square distance an animal travels, on average, over a specified period
of time. For stationary processes, the SVF is equivalent to the more familiar net-squared
or mean-squared displacement. If the animal has a finite covariance, which corresponds to
spatially limited movement and thus home-range behavior, then the SVF will asymptote to
this covariance over some timescale that characterizes the persistence of autocorrelation. For
our gazelle example in Fig. 2, there was visible evidence of a home range noted in
( ) Fig. 3.

Although, the presence of a home range can often be visually noted in the SVF esti-
mate and rough parameter estimates can be obtained via variogram regression, maximum-
likelihood analysis is the more rigorous method for parameter estimation and model com-
parison ( , : , ). A likelihood ratio test or AIC
comparison can be used to determine if there is support in the data for spatial constrained
movement. If the evidence for spatial constraint is weak, then the corresponding large un-
certainty in the spatial constraining parameters can be propagated into the AKDE estimate
(App. B.3). Importantly, AKDE estimation in cases where it is not warranted will either
fail outright or will yield very wide confidence intervals that appropriately reflect the lack of
information on home range or territory size in the data.

In the hypothetical case of a canid that patrols its territory once per day, the longer
autocorrelation timescale would be roughly given by 74 ~ 1 day. If the data spans many
days, then the semi-variance function would appear similar to Fig. C.1 B, and AKDE would
be appropriate. However, if the period of the data were only a few hours, then the semi-
variance function would appear similar to Fig. C.1 A. Therefore, at this stage the researcher
should not proceed to an AKDE analysis, or any home-range analysis, as the data will be
visually inappropriate. However, let us assume that the researcher proceeds to estimate
the autocorrelation parameters anyhow. If they perform a model comparison analysis, as
we advocate in ( ), then spatially-constrained models such as Ornstein-
Uhlenbeck motion should not be supported by the data over spatially-unconstrained models
such as Brownian motion. However, let us assume that the researcher fails to perform model
selection. Then, as the data do not suggest any spatial constraint, the spatially-constraining
autocorrelation parameters will be estimated to have extremely large confidence intervals.
Propagating these uncertainties into the AKDE will produce an area estimate with confidence
intervals that are larger than the point estimate.

C.1 The importance of positive-definite estimators

The optimal bandwidth relations are derived under the assumption of a positive-definite
autocorrelation function, and so applying an unconstrained estimate of the ACF to the MISE
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Figure C.1: A: A theoretical semi-variance function that is inappropriate for home-range
estimation. In this example, it is impossible to see the SVF asymptote to a finite variance
0o nor over what timescale 74 this would occur. B: The same semi-variance function (thick
line) and asymptotic variance (dashed), but observed over a longer period of time so as to be
appropriate for home-range estimation. Here it is clear that the variance and autocorrelation
timescale can be estimated from the data.



can can yield invalid results. Note that the stationary MISE (B.35) can be represented as
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If it is ever the case that o(7) > o, then the matrix sum in the first term can be indefinite,
resulting in a negative or infinite MISE. For a positive-definite ACF, it is always the case
that —og < o (1) < 40¢ and so this will not happen. However, this bound alone is still
insufficient. Consider an indefinite ACF estimate that takes the value o (1) = —o for all
7 # 0. The MISE resolves to
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In the limit of large n and small bandwidth, the MISE is given by
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lim lim e(op) = ; - i , (C.3)
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which is negative.
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