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APPENDIX A 

Complete derivation of new estimator based on the Delta method: RR∆ 

The multivariate Delta method is a useful way to approximate the mean and variance of RR by 

relying on a (truncated) Taylor series expansion. Typically for meta-analysis, effect size metrics 

like RR, Hedges’ d, and the Odds ratio use only first-order expansions to approximate asymptotic 

sampling distributions (Hedges 1981; Lajeunesse 2011). However, higher-order expansions are 

also useful given that they can be used to adjust or correct bias in the “naïve” effect size 

estimator (such as RR). Here, I begin with how the mean (Eq. 1) and variance (Eq. 2) of the 

original RR described in the main text can be approximated with the Delta method. I then extend 

this approach to obtain the higher-order terms necessary for deriving a correction. 

  Given the challenges of determining the moments of ratios and log-ratios (see below 

Sampling distribution of the ratio of two means), the Delta method provides a compromise to 

approximate the asymptotic sampling distribution for 𝜆𝜆. Following Stuart and Ord (1994), the 

expectation of the simplest estimator of 𝜆𝜆 based on the first-order Taylor expansion around the 

population means 𝜇𝜇T and 𝜇𝜇C of 𝜆𝜆 = ln(𝜇𝜇T/𝜇𝜇C) is approximately: 

𝔼𝔼(RR) ≈ 𝜆𝜆 + 𝐉𝐉T(𝒙𝒙 − 𝝁𝝁) + 𝜀𝜀RR, (A.1) 

where the superscript T indicates the transposition of a matrix, 𝜀𝜀RR the remainder (i.e., the 

ignored higher-order Taylor expansions), 𝝁𝝁 a column vector of the population means 𝜇𝜇T and 𝜇𝜇C 

(e.g., 𝝁𝝁T = [𝜇𝜇T, 𝜇𝜇C]), and 𝒙𝒙 a vector of the sample means 𝒙𝒙T = [𝑋𝑋�T,𝑋𝑋�C]. Also included is a 

Jacobian vector (𝐉𝐉) containing all the first-order partial derivatives (𝜕𝜕) of each variable in 𝜆𝜆: 

𝐉𝐉T = � 𝜕𝜕𝜕𝜕
𝜕𝜕𝜇𝜇T

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜇𝜇C

� = � 1
𝜇𝜇T

, −1
𝜇𝜇C
�.  



Lajeunesse, M.J. | 2 
 

Solving Eq. A.1, and noting that the expectation of 𝑋𝑋� − 𝜇𝜇 is zero at large sample sizes (e.g., 

when sampling error becomes negligible as assumed by the Law of Large Numbers; Stuart and 

Ord 1994), we get the original formulation of the response ratio: 

𝔼𝔼(RR) ≈ log �𝜇𝜇T
𝜇𝜇C
� + 𝑋𝑋�T−𝜇𝜇T

𝜇𝜇T
− 𝑋𝑋�C−𝜇𝜇C

𝜇𝜇C
≈ log �𝜇𝜇T

𝜇𝜇C
� ≈ 𝜆𝜆.  

 In a parallel way, we can also apply the multivariate Delta method to approximate the 

variance of RR using the Law of Propagation of Variances equation: 

𝑣𝑣𝑣𝑣𝑣𝑣(RR) ≈ 𝐉𝐉T𝐕𝐕𝐕𝐕 + 𝜀𝜀𝑣𝑣𝑎𝑎𝑎𝑎(RR), (A.2) 

where 𝐕𝐕 is the variance–covariance matrix of 𝜇𝜇T and 𝜇𝜇C containing their large-sample variances 

and zero covariances as follows: 

𝐕𝐕 = �
𝜎𝜎T2/𝑁𝑁T 0

0 𝜎𝜎C2/𝑁𝑁C
�.  

Examples of when study parameters are dependent and have non-zero covariances are covered 

elsewhere (Lajeunesse 2011). Solving Eq. A.2 we get the variance: 

𝑣𝑣𝑣𝑣𝑣𝑣(RR) ≈ 𝜎𝜎T
2

𝑁𝑁T𝜇𝜇T
2 + 𝜎𝜎C

2

𝑁𝑁C𝜇𝜇C
2.  

When replacing the population parameters 𝜇𝜇 and 𝜎𝜎2 with their respective sample statistics, 𝑋𝑋� and 

(𝑆𝑆𝑆𝑆)2, we get the original response ratio and variance of Eqs. 1 and 2 of the main text. Based on 

this approach, RR and 𝑣𝑣𝑣𝑣𝑣𝑣(RR) can be described as first-order approximations of the log ratio of 

two means. 

 However, for both the expected mean and variance of the log ratio (Eqs. A.1 and A.2, 

respectively), the remainder portion 𝜀𝜀 of Taylor expansions were ignored. Here we will add the 

second-order portion of 𝜀𝜀 to improve these estimators. The expectation of 𝜆𝜆 with a second-order 

Taylor expansion is: 
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𝔼𝔼(RR) ≈ 𝜆𝜆 + 𝐉𝐉T(𝒙𝒙 − 𝝁𝝁) + 1
2

(𝒙𝒙 − 𝝁𝝁)T𝐇𝐇(𝒙𝒙 − 𝝁𝝁)�������������
second-order term

+ 𝜀𝜀RR, (A.3) 

where 𝐇𝐇 is a Hessian matrix containing all the second partial derivatives (∂2) of 𝜆𝜆: 

𝐇𝐇 = �

∂2𝜆𝜆
∂2𝜇𝜇T

2
∂2𝜆𝜆

∂𝜇𝜇C𝜇𝜇T
∂2𝜆𝜆

∂𝜇𝜇T𝜇𝜇C

∂2𝜆𝜆
∂2𝜇𝜇C

2

� = �
−1/𝜇𝜇T2 0

0 1/𝜇𝜇C2
�.  

Solving for Eq. A.3, again assuming that the expectation of 𝑋𝑋� − 𝜇𝜇 will equal zero, but also that 

the square of this expectation equals its variance (𝑋𝑋� − 𝜇𝜇)2 = 𝜎𝜎2/𝑁𝑁, we get: 

𝔼𝔼(RR) ≈ log �𝜇𝜇T
𝜇𝜇C
� + 1

2
�(𝑋𝑋�C−𝜇𝜇C)2

𝜇𝜇C
2 − (𝑋𝑋�T−𝜇𝜇T)2

𝜇𝜇T
2 � ≈ log �𝜇𝜇T

𝜇𝜇C
� + 1

2
� 𝜎𝜎C

2

𝑁𝑁C𝜇𝜇C
2 −

𝜎𝜎T
2

𝑁𝑁T𝜇𝜇T
2�. (A.4) 

Note that because this second-order approximation did not reduce to 𝜆𝜆, this corroborates the 

Monte Carlo results that RR is biased (Fig. 1 of the main text).  

 Finally, using the compact matrix notation of Preacher et al. (2007), the approximation of 

the variance with a second-order term is: 

𝑣𝑣𝑣𝑣𝑣𝑣(RR) ≈ 𝐉𝐉T𝐕𝐕𝐕𝐕 + 1
2

tr[𝐇𝐇(𝐕𝐕𝐕𝐕)𝐇𝐇]���������
second-order term

+ 𝜀𝜀𝑣𝑣𝑣𝑣𝑣𝑣(RR), (A.5) 

with tr indicating the trace of a matrix. Solving Eq. A.5 gives the second-order approximation: 

 𝑣𝑣𝑣𝑣𝑣𝑣(RR) ≈ 𝜎𝜎T
2

𝑁𝑁T𝜇𝜇T
2 + 𝜎𝜎C

2

𝑁𝑁C𝜇𝜇C
2 + 1

2
�(𝜎𝜎T

2)2

𝑁𝑁T
2𝜇𝜇T

4 + (𝜎𝜎C
2)2

𝑁𝑁C
2𝜇𝜇C

4�. (A.6) 

Equations A.4 and A.6 both contain the original response ratio and its variance but now also 

include an additional (2nd order) term meant to improve the approximation of the expected log 

ratio.  

 The predicted bias of the RR estimator can be used to adjust the original RR as follows: 

RRadj = RR − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(RR) = RR − [𝔼𝔼(RR) − λ]. (A.7) 
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However, given that we do not know what λ will be, or the population parameters 𝜇𝜇 and 𝜎𝜎2, we 

can substitute the study sample statistics 𝑋𝑋� and (SD)2 to approximate these parameters. Using 

the expected mean of Eq. A.4, substituting the original RR as an estimate of λ, and consolidating 

terms, the small-sample bias corrected estimator for λ based on the Delta method (Δ) becomes: 

RRΔ = RR + 1
2
�(SDT)2

𝑁𝑁T𝑋𝑋�T
2 −

(SDC)2

𝑁𝑁C𝑋𝑋�C
2 �. (A.8) 

Likewise, applying Eq. A.5 with the general form of Eq. A.7 to adjust the variance we get: 

𝑣𝑣𝑣𝑣𝑣𝑣(RRΔ) = 𝑣𝑣𝑣𝑣𝑣𝑣(RR) + 1
2
�(SDT)4

𝑁𝑁T
2𝑋𝑋�T

4 + (SDC)4

𝑁𝑁C
2𝑋𝑋�C

4 �. (A.9) 

 

Complete derivation of new estimator based on the Linearity of Expectation rule: RRΣ 

The expected value of 𝔼𝔼(RR) can also be calculated using the Linearity of Expectation rule 

which states that the expected value of a sum of random variables, such as A and B, will equal 

the sum of their individual expectations (Stuart and Ord 1994), or more formally: 𝔼𝔼(A + B) =

𝔼𝔼(A) + 𝔼𝔼(B). Applying this rule to our case, and by using a convenient expression of RR based 

the quotient rule of logarithms, the expected mean of RR is: 

𝔼𝔼(RR) = 𝔼𝔼(ln[𝜇𝜇T]) − 𝔼𝔼(ln[𝜇𝜇C]). (A.10) 

According to Stuart and Ord (1994), the individual expected values of 𝜇𝜇T and 𝜇𝜇C in terms of 

ln[𝜇𝜇T] and ln[𝜇𝜇C] will have a mean of: 

𝔼𝔼(ln[𝜇𝜇]) = ln[𝜇𝜇] − 1
2

ln �1 + σ2

𝑁𝑁𝜇𝜇2
�.  

For the purposes of developing an effect size estimator, this expected mean assumes the large-

sample approximation of the variance of a mean (i.e., σ2/𝑁𝑁). Substituting these expected means 

of ln[𝜇𝜇T] and ln[𝜇𝜇C] into Eq. A.10, and simplifying terms, we get the expected mean of RR as: 
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𝔼𝔼(RR) = 2 ln �𝜇𝜇T
𝜇𝜇C
� − 1

2
ln �𝜇𝜇T

2+𝑁𝑁T
−1σT

2

𝜇𝜇C
2+𝑁𝑁C

−1σC
2�. (A.11) 

 The Linearity of Expectation rule also applies to variances, but now we must assume that 

ln[𝜇𝜇T] and ln[𝜇𝜇C] are independent from one another. This assumption of independence was not 

needed to derive RRΔ from Eq. A.4 (Stuart and Ord 1994). Here, the variance of 𝔼𝔼(RR) from Eq. 

A.10 is: 

𝑣𝑣𝑣𝑣𝑣𝑣(RR) = 𝑣𝑣𝑣𝑣𝑣𝑣(ln[𝜇𝜇T]) + 𝑣𝑣𝑣𝑣𝑣𝑣( ln[𝜇𝜇C]). (A.12) 

Again following Stuart and Ord (1994), the variance of the log of a normally distributed variable 

will be: 

𝑣𝑣𝑣𝑣𝑣𝑣(ln[µ]) = ln �1 + σ2

𝑁𝑁𝜇𝜇2
�,  

and therefore the sum of the variances of ln[𝜇𝜇T] and ln[𝜇𝜇C] will yield the variance of 𝔼𝔼(RR) as: 

𝑣𝑣𝑣𝑣𝑣𝑣(RR) = ln �1 + σT
2

𝑁𝑁T𝜇𝜇T
2� + ln �1 + σC

2

𝑁𝑁C𝜇𝜇C
2�.  (A.13) 

 Finally, much like the RRΔ estimator, we apply the 𝔼𝔼(RR) of Eq. A.11 and variance of 

Eq. A.13 to estimate an adjustment to the original response ratio, and following Eq. A.7 we get a 

new small-sample bias corrected estimator based on the Linearity of Expectation rule: 

RRΣ = RR + 1
2

ln �1+(𝑁𝑁T𝑋𝑋�T
2)−1(SDT)2

1+(𝑁𝑁C𝑋𝑋�C
2)−1(SDC)2

� = 1
2

ln �𝑋𝑋
�T
2+𝑁𝑁T

−1(SDT)2

𝑋𝑋�C
2+𝑁𝑁C

−1(SDC)2
�, (A.14) 

which has a variance of:  

𝑣𝑣𝑣𝑣𝑣𝑣(RRΣ) = 2 ∙ 𝑣𝑣𝑣𝑣𝑣𝑣(RR) − ln �1 + 𝑣𝑣𝑣𝑣𝑣𝑣(RR) + (SDT)2(SDC)2

𝑁𝑁T𝑁𝑁C𝑋𝑋�T
2𝑋𝑋�C

2 �. (A.15) 
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A few tips on up-keeping the accuracy of response ratio estimators 

Diagnostics like Eqs. 12 and 13 of the main text are important given that they can help identify 

when effect sizes provide accurate estimates of study outcomes (Appendix: Fig. A.3). However, 

there are other simple ways to uphold the accuracy of RR, RRΔ, and RRΣ. One is to make sure 

that the means used to estimate effect sizes are in units with a natural zero point (e.g., converting 

data expressed in degrees Celsius to degrees Kelvin), and are not adjusted/corrected relative to 

other variables (i.e. least square or marginal means). These types of means can yield negative 

values for either the control or treatment outcomes, and effect sizes cannot be computed in these 

cases because the log of a negative ratio is undefined. Although note that RRΣ is capable of 

computing effect sizes under these situations; but this should still be avoided because the 

magnitude of effect will be underestimated with these data. Again, the predicted sampling 

distribution of RR, RRΔ, and RRΣ will no longer be approximately normal when negative values 

are possible for the denominator or numerator of the ratio (see Hinkley 1969; see also below 

section: Sampling distribution of ratio and log ratio of two means). It is also important to avoid 

using percentages, proportions and counts when estimating effect sizes. These are inappropriate 

types of data for RR (as well as the corrected estimators) since its derivation assumes that 𝑋𝑋�C and 

𝑋𝑋�T are from independent and normally distributed populations (Hedges et al. 1999). The odds 

ratio family of effect size estimators is more appropriate for these data (Fleiss 1994). Finally, 

effect sizes calculated from experiments with unbalanced designs should also be treated with 

caution—such as when sample sizes (𝑁𝑁) differ considerably between the control and treatment 

groups (see Friedrich et al. 2008). However, this is not an issue unique to RR, RRΔ, and RRΣ; 

most effect size estimators will perform poorly under such conditions.   
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Sampling distribution of the ratio of two means 

If the denominator of a ratio like 𝑅𝑅 = 𝑋𝑋/𝑌𝑌 is always positive, and 𝑋𝑋 and 𝑌𝑌 are independent 

random variables where 𝑖𝑖 = 1, … ,𝑛𝑛 and 𝑗𝑗 = 1, … ,𝑚𝑚 for 𝑋𝑋𝑖𝑖~𝒩𝒩(𝜇𝜇,𝜎𝜎𝑋𝑋2) and 𝑌𝑌𝑗𝑗~𝒩𝒩(𝜂𝜂,𝜎𝜎𝑌𝑌2), then 

Geary (1930) and Fieller (1932) defined the probability density function 𝑓𝑓(𝑥𝑥) of this ratio to be: 

𝑓𝑓(𝑅𝑅) = 1
√2𝜋𝜋

𝑅𝑅𝑅𝑅𝜎𝜎𝑌𝑌
2+𝜂𝜂𝜎𝜎𝑋𝑋

2

(𝑅𝑅2𝜎𝜎𝑌𝑌
2+𝜎𝜎𝑋𝑋

2)3/2  × exp �−0.5 � [𝑅𝑅𝑅𝑅−𝜇𝜇]2

𝑅𝑅2𝜎𝜎𝑌𝑌
2+𝜎𝜎𝑋𝑋

2��. (A.16) 

For the purposes of developing and effect size metric (estimator) using the ratio of two 

independent but normally distributed (𝒩𝒩) means, with now 𝑅𝑅 = 𝑋𝑋�/𝑌𝑌�, we can replace the 

variances of 𝑋𝑋 and 𝑌𝑌 in Eq. A.16 with their large sample approximations, 𝜎𝜎𝑋𝑋2𝑛𝑛−1 and 𝜎𝜎𝑌𝑌2𝑚𝑚−1 

respectively, to get: 

𝑓𝑓(𝑅𝑅) = 1
√2𝜋𝜋

𝑅𝑅𝑅𝑅𝜎𝜎𝑌𝑌
2𝑚𝑚−1+𝜂𝜂𝜎𝜎𝑋𝑋

2𝑛𝑛−1

(𝑅𝑅2𝜎𝜎𝑌𝑌
2𝑚𝑚−1+𝜎𝜎𝑋𝑋

2𝑛𝑛−1)3/2  × exp �−0.5 � [𝑅𝑅𝑅𝑅−𝜇𝜇]2

𝑅𝑅2𝜎𝜎𝑌𝑌
2𝑚𝑚−1+𝜎𝜎𝑋𝑋

2𝑛𝑛−1
��. (A.17) 

This probability distribution function is the same as the one reported in the Appendix A of 

Hedges et al. (1999). However, they opted to re-arrange Eq. A.17 to simplify the way sample 

sizes 𝑚𝑚 and 𝑛𝑛 were presented (i.e., not using their inversed form). Given these differences and 

the several typos in Hedges et al. (1999) equation, below is a corrected version of their 

probability function: 

𝑓𝑓(𝑅𝑅) = 1
√2𝜋𝜋

√𝑚𝑚𝑚𝑚(𝑛𝑛𝑛𝑛𝑛𝑛𝜎𝜎𝑌𝑌
2+𝑚𝑚𝑚𝑚𝜎𝜎𝑋𝑋

2)
(𝑛𝑛𝑅𝑅2𝜎𝜎𝑌𝑌

2+𝑚𝑚𝜎𝜎𝑋𝑋
2)3/2  × exp �−0.5 � 𝑚𝑚𝑚𝑚[𝜇𝜇−𝑅𝑅𝑅𝑅]2

𝑛𝑛𝑅𝑅2𝜎𝜎𝑌𝑌
2+𝑚𝑚𝜎𝜎𝑋𝑋

2��. (A.18) 

The Appendix Figure A4 illustrates the broad variability of the probability distribution of the 

unlogged ratio of two means when the denominator is allowed to take on negative values; 

unfortunately when this is the case, the predicted probability distribution will not have a clean 

closed-form expression (Fenton 1960), and therefore the sampling variance for this distribution 

(for all ranges of μ and 𝜂𝜂) remains undefined.  
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FIG. A1. Results from a Monte Carlo simulation exploring bias in the variance estimators of the 

log ratio of two means: 𝑣𝑣𝑣𝑣𝑣𝑣(RR), 𝑣𝑣𝑣𝑣𝑣𝑣(RRΔ), and 𝑣𝑣𝑣𝑣𝑣𝑣(RRΣ). Interpretation, color coding, and 

contour lines are the same as Fig. 1 of the main text.   
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FIG. A2. A Monte Carlo simulation comparing the skewness (deviation from Normality) of 
randomly simulated log ratio estimators: RR, RRΔ, and RRΣ. A positive skew, emphasized in 
green, indicates a distribution with a longer right-tail; whereas a negative skew, emphasized in 
brown, indicates a longer left-tail. Following Tabachnick and Fidell (1996), the threshold where 
skewness is deemed non-zero was estimated as: ±0.01549. The contour line in light grey 
emphasizes this threshold.  
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FIG. A3. Results from a Monte Carlo simulation exploring the ability of accuracy diagnostics 
(Eqs. 12 and 13 of the main text) to flag problematic effect sizes based on the log ratio of two 
means. Presented are the probabilities of these two diagnostics to identify accurate effect sizes 
using Geary’s test of having both standardized means for the treatment and control groups being 
greater than three. Probabilities marked in red indicate the likelihood of detecting problematic 
effect sizes, and contour lines in black emphasize ranges when 95% of effect sizes are deemed 
accurate by the diagnostics (with accurate effect sizes emphasized in white). The methods of 
these simulations are the same as described in Fig. 1 of the main text.    
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FIG. A4. The various shapes of distributions of unlogged response ratio’s (𝑎𝑎/𝑏𝑏) when randomly 
simulated at different sample sizes (𝑁𝑁) and with differing numerator (𝑎𝑎) and denominator (𝑏𝑏) 
values. Presented are the histograms of 10,000 ratio’s of two random Normals with unit 
variances and means 𝑎𝑎 and 𝑏𝑏, respectively. Random ratios are inlayed within each histogram. 
These shapes include from the top to bottom rows: bimodal with long tails (𝑎𝑎 = 2, 𝑏𝑏 = 0), 
asymmetric with long tails (𝑎𝑎 = 5/3, 𝑏𝑏 = 3/8), symmetric with long tails (𝑎𝑎 = 0, 𝑏𝑏 = 1), and 
approximately Normal (𝑎𝑎 = 0, 𝑏𝑏 = 6).  
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