
Appendix B. – Stability analysis of the OBE model 

In this appendix, we provide details of the stability analysis of the dimensionless OBE model Eq. 

(2), 
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which is a delay-differential equation. The model in Eq. (B.1) is not analytically tractable 

because of non-linearities. In order to examine the propensity of Eq. (B.1) to exhibit persistent 

variability in induction levels and herbivore densities, we turn to linear stability analysis. The 

basic technique is to approximate a non-linear system with a linear one near enough to 

equilibrium that influences of non-linearities are very small. The benefit of making such an 

approximation is that linear systems are analytically tractable, and can effectively describe the 

stability properties of equilibria of non-linear models under most conditions (Murray 2003). 

Analyses based on linear approximation were confirmed with numerical simulations of non-

linear models (not shown). 

Defining the perturbations as *
j jI I i= + and *

j jH H h= + , substituting these into Eq. 

(B.1) and ignoring small non-linear terms yields a linear equation with the general form 

 
11 12 ,

21 1 22 23 1 24 1 25 26 1

j
j t j

j
j j j j j j

di
a i a h

dt
dh

a i a i a i a h a h a h
dt

τ−

− + − +

= +

= + + + + +

  (B.2) 

where 11 1a = − , 12 1
ba

b

θ

θ

θ
=

+
, *

21 2
a Hχ

= , *
22a Hχ= − , *

23 2
a Hχ

= ,
*

24 2
d Ia χ+

= ,

1 
 



( )*
25a m d Iχ= − − + , and
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= . Note that, because of our choices of base units during 

dimensional analysis, * * 1I H= = . Perturbations i and h that grow indicate instability and the 

presence of persistent spatial variation in both induction and herbivore densities. 

 Given that we are looking at the stability of perturbations with a spatial signal, further 

progress is facilitated with the use of Fourier transforms. The Fourier transform characterizes any 

signal as the sum of sinusoids with—in our case—different spatial frequencies k and spatial 

wavelengths 2π/k. The Fourier transforms of i and h are defined as ( ) 1
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= ∑  where 1Ι = − . Applying these to Eq. (B.2)—noting that the Fourier 

transform of a discrete lagged function is 1
k

j jn n e−Ι
− =  (Nisbet and Gurney 2003)—gives   
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Note how the equations now describe the dynamics of a spatial distribution with frequency k 

rather than resistance levels and herbivore densities in a given patch j. 

 To simplify further analyses, it is desirable to replace the complex exponentials above 

with more tractable quantities. For ease of presentation, we opt to replace these terms with 

approximations obtained using second-order Taylor series expansions around k = 0, where
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. An exact (real) substitution can be made for the complex exponentials 
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in the bracketed expression using Euler’s formula; however, the Taylor approximation is easier 

to interpret by avoiding trigonomic functions and is extremely accurate up to at least k = π. After 

some simplification, 
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 We now look for solutions to Eq. (B.4) of the form eλt. Substituting the ansatz ti eλ= Ψ

and th eλ= Φ and re-arranging yields the corresponding characteristic equation for the system, 

 2
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induction levels or herbivore densities with spatial frequency k will increase to form persistent 

aggregations if the real part of λ, Re(λ), is greater than zero; we refer to this quantity in the text 

as the perturbation growth rate ξ. Equation (B.5) is a transcendental equation, meaning that we 

cannot algebraically find closed form representations for λ. However, systems with characteristic 

equations in the form of Eq. (B.5), especially conditions on their stability, have been well studied 

(Kuang 1993). Transitions to instability happen through a Hopf bifurcation such that we have 

solutions to Eq. (B.5) in the form of λ ω= Ι  at a some critical time delay Cτ . This implies (see 

(Kuang 1993 for details), 
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There are two cases we need to consider to determine whether there exists a solution 

3 
 



λ ω= Ι  to Eq. (B.5). First, when 2 2
3 2 0B B− ≥ , there exists one solution λ ω+= Ι . When the time 

delay exceeds the critical time delay Cτ , the system loses stability through this root and does not 

regain it for any Cτ τ> . When 2 2
3 2 0B B− < , there can be two solutions,λ ω± ±= Ι , given other 

conditions hold true. A necessary (but not sufficient) condition is 2
2 12 0B B− > . For the OBE 

model, ( )
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where 
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We refer to Λ as the “instability metric” in the text. The critical time delay Cτ that makes Eq. 

(B.8) is true is derived in (Kuang 1993) as 
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 Stability analyses of the OBME and LBME are accomplished in the same manner as 

outlined for the OBE model above. 

 For Eq. (B.4), 2 2
3 2 0B B− ≥ is  
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In the best case for stability, where m and d approach zero, we see that instability requires 
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The importance of the induction time delay can be demonstrated by examining the case 

where the time delay is absent, as the model is always stable in this instance. Setting τ = 0 sets 

the exponential term e λτ− in Eq. (B.5) to one, transforming the characteristic equation into a 

simple quadratic equation commonly encountered in two-species consumer-resource models 

(Murdoch et al. 2003). Routh-Hurwitz stability conditions for such a two state variable system 

guarantee stability when 
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For the OBE equation with no time delay, ( )
2

1 1
2
kB m d χ= + + +  and 

( ) ( )
2 2

2 3 22 1
b k kB B m d

b

θ

θ

θχ χ+ = + + +
+

 , both satisfying the inequalities in Eq. (B.11). 

 The OBE model is always stable in the face of global perturbations. Such global 

perturbations have a frequency k = 0, meaning an essentially infinite spatial wavelength (i.e., the 

wave becomes flat). Setting k = 0 in Eq. (B.5) causes it to simplify in such a way that 

Max{ , 1}mλ = − − . Thus, the system is always stable in the face of global perturbations and, 

because λ is always a real number in this case, does not even show transient oscillations. 

 Some level of herbivore movement sensitivity χ is required for spatial patterns to 

develop. When χ = 0, ( )22 2 2
3 2

1 2
4

B B d k m− = − +  and the stability criterion Eq. (B.7) can never 

be satisfied. 
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