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Appendix A. A Brief Primer on Spectral Analysis 

Consider the hypothetical variable y(x) depicted in Figure 1B.  The location, x, along a particular 

spatial path is shown on the abscissa and the magnitude of the variable is shown on the ordinate.  

For example, if we moved a thermometer along a horizontal path through the intertidal zone and 

continuously measured both x, the total distance traveled, and y¸ the temperature of the rock surface, 

a graph similar to Fig. 1B would likely result. 

The fluctuation in y is traditionally measured by its variance.  In practice, y is sampled at a 

discrete set of locations, and the sample variance is calculated as 
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Here, y(xj) is the magnitude of the function at the jth location, n is the total number of samples, and 

µy is the mean of the sampled values.   

The variance describes the overall amount of fluctuation in a variable, but it does not 

describe how this fluctuation is divided among measurement scales.  It is evident from Fig. 1B that 

in this particular case y tends to vary periodically along its path of measurement.  This periodicity is 



not perfect (e.g., sometimes there is a valley in y where a peak would be expected), but a dominant 

spatial pattern can be discerned.  What is the scale of this pattern, and how can we calculate it? 

A classic theorem (due to J. B. J. Fourier, 1768 - 1830) tells us that the spatial variation in y 

as a function of x can be quantified through the following procedure.  The total length of our 

measured path, xmax, defines the largest scale about which we have any data (the extent of the data).  

Note that if all n samples are spaced ∆x apart, the total length over which we have measured y is 

xmax: 
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Traditionally this extent is expressed not as xmax itself, but rather as the fundamental spatial 

frequency, ff: 
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A low spatial frequency corresponds to a large spatial extent, a high spatial frequency corresponds 

to a small spatial extent. Spatial frequency has units of m-1. 

Given the fundamental spatial frequency (which is set by the total path length), we describe 

the variation in y at a series of additional frequencies, fi, each a harmonic of the fundamental.  In 

other words, we examine spatial frequencies 
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where i is an integer greater than 0.   

At any given point x, the magnitude of y is: 
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This is one form of the classic Fourier series (Bendat and Piersol 1986).  In essence, we sum a series 

of harmonic sinusoidal waves (each with its own particular amplitude, bi, and phase, φi) to 



approximate the overall pattern of variation in y.  This process is shown in Fig. 1C-L.  The ten 

waves shown there (each a harmonic of the fundamental) sum to the overall waveform plotted in 

Figure 1B.  Note that each harmonic has an integral number of wave lengths in the interval xmax.  

For simplicity in this example we set xmax to 1.  Note that the third, seventh, and tenth harmonics of 

the fundamental have the largest amplitudes. 

Having expressed the function y(x) as the sum of a series of sine waves, we can now use the 

amplitude of each of these waves to calculate what fraction of the overall variance in y is associated 

with each of the spatial scales described by the harmonics of the fundamental spatial frequency.  

The details of the calculation need not concern us here (see Bendat and Piersol 1986); it is the end 

result that matters.  The scale-specific (= frequency-specific) contribution to the overall variance in 

y is quantified by the autospectral density function, S(f).  If a large fraction of the overall variance in 

y occurs with a periodicity that falls in a particular small range in spatial frequencies, the S for that 

frequency range is large.  Conversely, if little of the overall variation in y corresponds to a particular 

spatial frequency, the S for that frequency is small.  The pattern of variation among frequencies is 

the autospectrum shown in Figure 2A, in this case for the process shown in Fig. 1B.  Note that there 

are peaks in this autospectrum at the third, seventh, and tenth harmonics of the fundamental 

frequency, corresponding to those harmonics that have large amplitudes (Fig. 1C-L). 

It is important to note several properties of the autospectrum.  First, there is an upper limit, i 

= g, to the harmonic of ff at which we can discern any variation in the process y, and this limit is set 

by the spacing, ∆x, between our samples.  If y varies at a scale smaller than 2∆x, this variation 

cannot be reliably measured directly by our technique.  The spatial frequency corresponding to a 

scale of 2∆x (known as the Nyquist frequency, fg) is equal to 1/(2∆x).  Working through the algebra, 

we find that g = (n-1)/2. The Nyquist frequency is equivalent to the lower limit of the spatial detail 



we can discern (the grain of our measurements). Note that variation at frequencies above the 

Nyquist frequency is not excluded from our measurements.  Instead, through a process known as 

aliasing, high frequency fluctuations appear in the form of spurious, “scrambled” variation at 

frequencies below the Nyquist frequency (see, for example, Press et al. 1992), and can thereby 

potentially affect our measurements.   

Second, the integral of S(f) across a particular range of frequencies is equal to the variance 

associated with those frequencies: 
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This is the basis for calculating the variance scale (Eqs. 7, B10) and for the calculations shown in 

Fig. 9. By extension, the integral of S(f) between the fundamental and Nyquist frequencies is equal 

to the overall measurable variance in y:   
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In other words, the total area under the autospectrum is equal to the overall variance. 

Third, the units of S(f) take into account the units of both y and x.  For example, in the case 

described here y is measured in oC and x is measured in meters (so that spatial frequency has units 

of m-1).  The variance in temperature, σ2 (the area under the curve), has units oC2.  As a result, S 

must have the units oC2m. 

Because the spectrum is calculated only for harmonics of the fundamental frequency (and 

are therefore orthogonal [see Priestley 1981]), the individual spectral estimates are independent. In 

other words, the spectrum calculated as described above provides the minimum number of 

sinusoidal waves required to exactly reproduce the sample data. 



It is common that the magnitude of individual points in the autospectrum varies across a 

large range.  When this is true, the fine structure of the spectrum may be dwarfed by the major 

peaks, and can thereby escape notice.  As a remedy, spectra are often plotted on log-log axes, and 

this convention is used here in Appendix E.  Note that areas under spectra can be visually distorted 

by the log transformation. 

 We have seen here that if a variable is characterized by periodic fluctuation at one particular 

spatial scale, this tendency will be exposed by the existence of a peak in the autospectrum.  This 

does not imply, however, that all variables are periodic, nor that all periodic variables are 

characterized by single spectral peaks.  A pertinent example is shown in Fig. A1.  Here the data are 

clearly periodic (Fig. A1A), but not sinusoidal: in this case, all negative values of a sine wave have 

been set to zero, while the positive values are unchanged.  The hypothetical variable shown here is 

very similar to measurements of environmental light intensity in which it is uniformly dark at night, 

but solar irradiance varies approximately sinusoidally throughout the day (Fig. E1).  The spectrum 

of this process (Figs. A1B and C) is characterized by a series of peaks.  The peak with the lowest 

spatial frequency corresponds to the overall periodicity of the variable.  The peaks at higher spatial 

frequencies are an indication of the additional waveforms required to give the data its nonsinusoidal 

shape. In this case, only the lowest-frequency peak should be used to characterize the peak scale. 

This rule applies to ecological data as well. For example, consider the predator density along 

a hypothetical intertidal transect.  The maximum density is constant for 1 m, then abruptly shifts to 

a higher density for 1 m, then back to the original density for 1 m.  This “square wave” pattern is 

repeated along the shore.  Thus, this hypothetical shoreline has a predation scale of 1 m.  The spatial 

autospectrum of this square wave would look qualitatively similar to that of Fig. A1B, C, with its 



primary peak at 0.5 m-1 (although the density is constant for 1 m, the pattern of density repeats itself 

every 2 m).  

We now return to the problem of aliasing.  Consider the situation shown in Figure A2A.  

Two sine waves of different frequencies are sampled with a fixed spacing, ∆x.  In every case, the 

sampled points fall on both sine waves.  In other words, given this sampling regime, we have no 

way of discerning whether our measured variation is associated with wave #1 (at a frequency below 

the Nyquist frequency) or wave #2 (at a frequency above the Nyquist frequency).  Indeed, an 

infinite number of sine waves at still higher frequencies could yield the same measurements given 

the spacing ∆x.  Only if we were to sample at a smaller interval would we be able to discern exactly 

what frequency (or frequencies) contribute to the measured variation.  This observation is the 

essence of the fact noted earlier: we cannot accurately discern the frequency of variation for 

fluctuations above the Nyquist frequency.  Fig. A2 has further implications, however.  If, in reality 

it is wave #2 that is present in our data (rather than wave #1), the variation due to this wave is still 

recorded in our measurements even though its frequency lies above the Nyquist frequency.  In other 

words, just because fluctuations occur at a frequency above that which we can accurately discern, 

the variation associated with these frequencies still appears in our data.  The variance associated 

with frequencies above the Nyquist frequency is aliased to frequencies below the Nyquist 

frequency.   

The mechanism by which aliasing occurs is shown in Fig. A2B.  A fluctuation at a 

frequency above fg is sampled at a spacing ∆x where ∆x is not a precise multiple of the wavelength 

of the fluctuation.  As a result, if the first sample falls at a peak of the fluctuation, the second sample 

will be taken slightly off peak, the third sample farther off peak, and so forth.  The sampled points 

trace out a sinusoidal fluctuation at a low frequency, a frequency well below the Nyquist frequency.  



This is the aliased signal.  It can be shown (e.g., Bendat and Piersol 1986) that a frequency f below 

the Nyquist frequency can potentially be “contaminated” by fluctuations at ff ±g2 , ff ±g4 , 

ff ±g6 , etc.  Thus, if there is variance above the Nyquist frequency, the measured spectrum may 

deviate substantially from reality.   

In practice, the problem of aliasing is controlled by filtering the measured data prior to 

analysis.  For example, our measurements of species diversity, mussel density, mussel disturbance, 

and predation intensity are made using a quadrat 0.21 m x 0.30 m. In essence, the values obtained 

from these measurements are averages over this area, and variation at smaller scales is thereby 

filtered out. Similarly, in the wave-force measurements made in this study, the size of the apparatus 

is such that measured forces are averaged over a scale xmin of approximately 20 cm.  Forces with a 

smaller spatial scale cannot affect the apparatus, and variation associated with them therefore 

cannot be aliased.  Measurements of larval recruitment are made using settlement plates of finite 

dimension, xmin.  Each measurement is thus an average value tied to this minimum scale, and higher 

frequency (= smaller scale) variations are filtered from the data.  In all real-world measurements, 

the properties of the measuring apparatus place an upper limit, fmax = 1/xmin, on the frequency that 

can be measured, and it is thus only those frequencies between fg and  fmax that can be aliased. 

Although we cannot definitely rule aliasing out as a factor in our analyses, the shape of all of our 

spectra (in which the variance decreases rapidly with increased frequency within the range we have 

sampled), and the relatively narrow band of frequencies between fg and  fmax suggests that aliasing 

effects are negligible. 

The brief description here of spectral analysis has been couched in terms of spatial variation.  

The technique can be equally well applied to variation through time.  In this case, the abscissa of 



Fig. 1 would measure time, t, and the scale of variation would be characterized by harmonics of the 

fundamental temporal frequency, ff: 
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The process is sampled at equally spaced intervals of time, ∆t, and the total length of the time series 

is (n-1)∆t = tmax.  In a temporal spectrum, a peak at a high frequency corresponds to a variable that 

fluctuates with only a short interval between occurrences, whereas a peak at low frequencies 

corresponds to a variable that fluctuates with a long interval between occurrences.   

 

Nuts and Bolts 

Each of our data series was divided into four segments (each with an even number of data 

points) with a 50% overlap among segments.  A Hanning window was applied to each segment to 

avoid spectral artifacts due to any abrupt deviation of the data from the mean at the ends of the 

segments, and the spectral estimates were calculated for each segment and adjusted for the decrease 

in variance due to the Hanning window.  See Bendat and Piersol (1986) or Priestley (1981) for a 

discussion of spectral windows. The overall spectral estimate at each harmonic is the average of the 

estimates for the four segments.   

The choice of four segments was determined by the following factors.  We desired to 

examine our data at as broad a range of scales as possible, and the maximal scale (the minimum 

spatial or temporal frequency) is set by the length of the data series.  The fewer the number of 

segments we used, the longer each segment could be, and the larger the scale we could examine.  

However, there is a practical lower limit to the number of segments.  The statistical confidence in 

each spectral estimate decreases as the number of segments decreases (Bendat and Piersol 1986, 

Priestley 1981).  We found that the use of four segments yielded results that were consistent with 



those using higher numbers of segments, whereas the use of three or fewer segments yielded results 

that were unacceptably noisy.  Thus, for our data the use of four segments represents the optimal 

tradeoff between record length and statistical confidence. Common, alternative methods for 

increasing statistical confidence (band averaging or running averaging the spectrum from the full 

time series) result in the loss of high-frequency spectral estimates and (for the same statistical 

confidence) do not retain any additional information about low frequencies. 

Note that the use of multiple segments affects the number of data points necessary to 

examine a process.  If ∆x is the time or distance between measurements, xg (= 2∆x) is the smallest 

time or distance at which frequency-specific information is available (the Nyquist scale, the grain), 

xmax is the largest scale for which information is desired (the extent), and the number of samples in a 

single segment encompassing all the data is (2xmax/xg)+1.   If, however, d segments are needed for 

the analysis (d > 1), and an overlap of 50% between segments is assumed (as used here), the total 

number of samples required is: 
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Thus, when d = 4 (as we have used), approximately 2.5 times as many samples are required as one 

might naively assume to examine variation at a given maximum scale. 

 The confidence limits on each spectral estimate are determined by the number of degrees of 

freedom associated with that estimate. When estimates are based on the average of n segments (as 

they are here), there are 2n degrees of freedom (Bendat and Piersol 1986). The 95% confidence 

limits are (Bendat and Piersol 1986, p 286): 
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Lastly, we note that spectral analysis provides the same information as the analysis of 

autocovariance, a form of analysis with which ecologists may be more familiar (see Appendix C).  

The Wiener-Kinchine relationships show that the autocovariance of a process is the inverse Fourier 

transform of the autospectrum (Bendat and Piersol 1986).  Thus, for example, the measurements of 

spatial autocorrelation in intertidal snails made by Underwood and Chapman (1996) provide the 

same type of spatial information as the spectral measurements made in this study. 
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Figure Legends 

Figure A1. A. A periodic signal (a truncated sine wave) similar to the signal of solar irradiance. B. 

The spectrum of the signal shown in panel A. Note the existence of a dominant peak. 

The secondary peak at the first harmonic of the primary peak is a result of the 

nonsinusoidal shape of the signal. C. The spectrum of panel B plotted on log-log axes. 

Figure A2. A. The measurements taken at the dots could be due either to the low-frequency wave 1, 

or the-high frequency wave 2. B. Sampling a high-frequency wave at too low a 



frequency leads to an aliased signal. The variation due to the high-frequency wave (the 

solid line) appears to occur at a much lower frequency (the dashed line). 



Fig. A1
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Fig. A2
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Appendix B. Details of the Definitions of Scale 

 Practical implementation of the definitions of scale involves a number of details and caveats, 

which are discussed below. 

1. The Peak Scale 

 Practical considerations and caveats regarding calculation of the spectrum itself have been  

covered in Appendix A. The fraction of the overall variance associated with each dominant spectral 

peak was calculated by integrating the area under the peak (the limits of which were judged by eye) 

and dividing that area by the integral of the entire spectrum.  

Note that the definition of the peak scale requires that we be able to discern discrete peaks in 

the spectrum. When examining our spectra for the existence of discrete peaks, the following criteria 

were applied.  If, on a log-log plot of the spectrum, the lower 95% confidence limit for a spectral 

estimate (see Appendix A) fell substantially above a regression line through the data, a peak was 

suspected, and if two adjacent spectral estimates met this criterion, the case for the existence of a 

peak was strengthened.  In a few cases, the lower 95% confidence limit for a single estimate fell at 

or just marginally above the regression line, and in these cases we have taken a conservative 

approach and assume that these “peaks” are not sufficiently dominant to warrant the calculation of a 

peak scale.  For each vetted peak we note the fraction of the overall variance contained within that 

peak. Only if a substantial fraction of the overall variance is contained within a peak (> 

approximately 25%), does the scale associated with that peak likely have much ecological 

significance. 

2. The Frequency Scale 

The frequency scale defined using Eq. 2 is affected by issues of practical measurement. The 

upper limit of integration is constrained by the highest frequency at which we can examine a 



phenomenon. This limiting frequency (fg, the Nyquist frequency, see Appendix A) corresponds to 

twice the smallest time or distance over which we make measurements. The Nyquist time or 

distance is in turn a measure of the grain of measurement. The lower limit of integration, fmax, is 

constrained by the largest time or distance over which we can measure a phenomenon (the extent). 

Given these practical limits, the average frequency of the measurable variation is 
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What are the effects of these limits of integration on the average frequency? The answer depends on 

the shape of the spectrum. If the spectral density is low in the vicinity of both the maximum and 

minimum frequencies, the presence of these constraints has negligible effect. In contrast, if the 

spectral density is substantial near either limit, the magnitude of the limit affects the calculated 

scale. For example, by inserting Eq. 8 into eqs. 2 and 3, we find that the frequency scale of a 1/f-

noise process (0 < β <1) is: 
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An increase in either the grain (fg) or the extent (fmin) of measurement results in an increase in the 

calculated frequency scale.  

As fmin approaches 0 (that is, as the extent of the measurement gets very large), this 

expression reduces to: 
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In this case, the f-scale is independent of the extent of measurement, and the grain has the strongest 

influence on the calculated f-scale: the smaller the grain, the higher fg is, and the smaller the scale. 

Note that when β > 1, the integral in the numerator of Eq. 2 is improper, and it cannot be used to 

calculate a scale for a measurement of infinite extent. 

In light of these complications, the frequency scale of 1/f-noise processes must be treated 

with caution. In particular, one would expect that for any practical set of measurements the 

calculated scale will increase with an increase in either the grain or the extent of the measurements. 

The f-scale values subject to this cautionary note are indicated in Tables 1 and 2 with an asterisk. 

3. The Wavelength Scale 

As with the frequency scale, practical application of the definition of the wavelength scale 

(Eq. 4) is constrained by the grain and extent of measurement. The upper limit of integration is 

constrained by the extent, λmax, and the lower limit by the grain, λg: 
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If the spectral density is substantial in the vicinity of these limits, the magnitude of the limits can 

affect the calculated scale. For example, if the spectrum is 1/f noise (0 < β <1), Lw is 
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An increase in either the extent or grain of measurement results in an increase in the calculated 

wavelength scale.  

If the grain of the measurement is very small compared to the extent, this expression reduces 

to  
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Clearly, in this case the extent of the measurement is the strongest influence on the calculated 

wavelength scale. 

4. The Integral Scale 

 The integral scale has been widely used in the study of turbulence as a measure of the 

characteristic scale of velocity fluctuations (Tennekes and Lumley 1972). In this application, it is 

generally assumed that the autocorrelation function asymptotically decays to 0 at infinite lag, and 

the parameter a in Eq. 5 is thus commonly cited as ∞ . In contrast, ecological systems often exhibit 

autocorrelation functions that wander negative, leading us to the arbitrary selection of a used here.  

 As with the frequency-, and wavelength scales, the integral scale can be directly affected by 

the grain and extent of measurement. For the 1/f-noise spatial data typical of this study, the grain of 

measurement has little effect, whereas the calculated i-scale is sensitive to the measurement’s 

extent: the larger the extent, the larger the i-scale. This effect is illustrated in Fig. B1.  Here, the 

autocovariance for the 1/f-noise process has been estimated by numerically solving: 
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This is the inverse Fourier transform of the spectrum, which, by the Wiener-Kinchine relationships 

is equal to the autocovariance (Bendat and Piersol 1986). 

5. The Derivative Scale 

 The concept of the derivative scale is challenged by our ability to calculate the derivative for 

the type of discrete data that are available for ecological measurements. The standard finite-

difference technique for estimating the derivative at a point is illustrated in Fig. B2. The value yi of 

a process is measured at a series of points, xi, where the spacing between measurements is a 



constant ∆x. For three adjacent points, the derivative at the middle point, xi, is estimated as a three-

point average: 
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This formula works well as long as the scale of variation is large relative to 2∆x. However, when 

the measured quantity varies rapidly, Eq. B8 can lead to a gross underestimation of the average 

derivative of the process. No fully satisfactory solution is apparent for this problem. As a partial 

solution, we have chosen to calculate the derivative as a two-point average: 
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Use of this two-point derivative reduces the tendency to overestimate the derivative scale. The 

magnitude of the residual tendency is shown in Fig. B3. In plotting this figure, Eq. B9 has been 

used to calculate the derivative scale of a fixed wavelength monochromatic sine wave as the spacing 

between measurements is varied. The ratio of the sampled vs. the continuous scale is almost always 

greater than 1.0 (that is, the calculated derivative scale is too large), but the deviation from 1.0 is 

relatively small (on average, only 5%). This curve has been truncated at a measurement interval 

equal to half the wavelength, a spacing that places our measurements at the Nyquist frequency (see 

Appendix A). 

6. The Variance Scale 

In practice, the scheme described in the text is carried out through the use of spectral 

analysis. As described in Appendix A, the spectrum was calculated for a particular variable, and the 

standard deviation at a measurement scale a is defined as the square root of the sum of the variances 

at all smaller scales (higher frequencies): 
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Characterization of the inflection point, ai, in this curve was then carried out as described in the text. 

This procedure works well for our data, but there is no guarantee that it will work for all data. 

 The practical value of the inflection point in a curve of logσ vs. log measurement extent 

(e.g., Fig. 3) is as an estimate of the scale at which a phenomenon must be measured to ensure that 

most of the variation present in the real world is also present in one’s data. This value is jeopardized 

if, as the extent of measurement increases beyond the variance scale, the variance continues to 

increase. Thus, the slope of the curve of logσ vs. log measurement extent at large extents can be 

used as an index of the “solidity” of our estimation of the v-scale. If this slope is small, the 

inflection point represents a solid estimate of the variance scale. If, in contrast, the slope is 

substantial, this is an indication that the standard deviation continues to increase with an increase in 

the extent of measurement, and our estimate of the v-scale is weak. In general, the slopes calculated 

for our temporal data are small, whereas the slopes for our spatial data are substantial (Table B1).  

The estimates of the spatial v-scale should therefore be taken with a grain of salt.  

Comparisons Among Scales 

 When these definitions are applied to our data, the different methods often yield different 

estimates of scale.  These differences are due to the nature of the data (in particular, the shape of the 

spectrum), and are not intrinsic to the definitions themselves. The sole exception to this statement is 

the derivative scale, which yields a value that is approximately 5% high, as noted above. This slight 

bias is negligible compared to the order-of-magnitude differences commonly found when these 

definitions are applied to real-world data. The precise manner in which a data series interacts with 

our definitions of scale is complex. However, we have conducted a preliminary exploration. First, 



we calculated the scale for a simulated monochromatic, sinusoidal signal that varies with a 10-m 

wavelength, sampled as it would be on our transects. As expected, each definition of scale yields a 

reliable 5-m scale for each of the transect lengths for each of the p-, f-, w-, v-, and i-scale 

calculations.   

 We next applied our definitions to simulated 1/f-noise data following a method suggested by 

Hastings and Sugihara (1993). To construct each data series, we first created an appropriate Fourier 

series by choosing amplitude coefficients for a harmonic series of frequencies, fi. The coefficient for 

each harmonic is the absolute value of a sample chosen from a normal distribution with a mean of 

zero and a variance equal to 1/fi
β. Each harmonic in the Fourier series was then assigned a random 

phase, uniformly distributed between 0 and 2π. The inverse Fourier transform of this series yielded 

one realization of a 1/f-noise data set with spectral exponent β. Thirty such data sets were created 

for each value of β for each method of calculating scale, and the average and standard deviation of 

calculated scales were determined. β values ranging from 0 to 2 were tested, and the results are 

given in Fig. 7.  In all cases, the slope of log σ vs. log measurement extent was substantial for large 

values of a, suggesting that the estimates of the v-scale shown here are “weak,” as discussed above. 

 Note that all of our definitions for the scale of variability can be related through the 

spectrum. This interrelationship is simply a mathematical acknowledgment of the fact that any 

definition of the scale of variability is tied to a description of pattern. A spectrum can be calculated 

for any natural pattern (periodic or otherwise) (Priestley 1981, Bendat and Piersol 1986), thus the 

existence of a spectrum does not imply that a pattern is periodic.  
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Table B1. Parameters related to the “solidity” of the v-scale estimate. The lower the ratio of slopes, 
the better the estimate. High slopes > 0 indicate that variability continues to increase with 
measurement scale, and the calculated v-scale thus incorporates only a fraction of the total 
variability. 
 
 
 High Slope Low Slope Ratio 
    
Solar Irradiance 0.012 102.00 0.000117 
    
Intertidal Body Temp 0.045 204.00 0.000220 
    
Upwelling Index 0.050 7.16 0.006980 
    
Sea Surface Temp. 0.018 317.00 0.000057 
    
Significant Wave Height 0.007 251.00 0.000028 
    
Force    
    short 0.405 8.44 0.048000 
    medium 0.189 5.55 0.034100 
    long 0.300 4.10 0.073000 
    
Wave Force Index    
    short 0.176 3.46 0.050800 
    medium 0.201 3.45 0.058300 
    long 0.195 6.06 0.032200 
    
Temperature    
    short 0.446 6.47 0.068900 
    medium 0.274 5.81 0.047200 
    
Chlorophyll    
    medium 0.488 6.11 0.079900 
    
Diversity    
    short 0.108 6.71 0.016000 
    medium 0.087 5.30 0.016400 
    long 0.165 7.33 0.022900 
    
Mussel Density    
    short 0.128 3.45 0.037100 
    medium 0.244 6.75 0.036100 
    long 0.258 7.22 0.026600 
    
    



    
    
Table B1 continued.    
    
Mussel Disturbance    
    short 0.074 1.82 0.040700 
    medium 0.078 4.83 0.016100 
    long 0.140 8.05 0.017400 
    
Mussel Recruitment    
    medium 0.159 2.95 0.053900 
    
Predators    
    short 0.095 5.47 0.017400 
    medium 0.695 6.32 0.011000 
    long 0.035 2.38 0.014700 
    
Grazers    
    short 0.052 4.52 0.011500 
    medium 0.298 11.30 0.026200 
    long 0.112 3.84 0.029200 
 



Figure Legends 

Figure B1. The integral scale is affected by the extent of measurement for 1/f-noise processes. To 

produce these curves 1/f-noise signals with a maximum extent of 5000 m were sampled 

at a range of measurement extents. 

Figure B2. A schematic representation of the factors used to calculate a derivative for discretely 

sampled data (see text).  

Figure B3. Estimation of the derivative using finite difference leads to an overestimate of the 

derivative scale. The ratio of the sampled, calculated scale to the actual scale is shown 

as a function of the relative magnitude of the measurement interval to the wavelength of 

the sinusoidal signal.  
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Appendix C. Autocorrelation 

 The autocorrelation function is a measure of how well points in a series of data are 

correlated to other points in the same series, separated by a certain lag. Consider a set of n 

measurements, x1, x2, …xn, taken at equal intervals in either time or space. The autocovariance for a 

lag, r, is 

 ∑
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where µx is the mean of the data series.  

The autocovariance can be expressed as a fraction of the overall variance to give the 

autocorrelation: 
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Appendix D: Details of the Materials and Methods  

1. Recording Dynamometers.  

At each experimental location on the transects, a 1.6-cm diameter, 20-cm deep hole was 

drilled into the granite substratum.  The opening of this hole was countersunk to a depth of 2.5 cm 

and a diameter of 3.2 cm, and a PVC threaded female pipe fitting (1/2” NPT) was installed using 

epoxy putty.  This fitting served to mount either a recording dynamometer (for measurements of 

maximum wave-induced hydrodynamic force), or a recording thermometer (for measurements of 

maximum temperature).   



The recording dynamometers were similar in construction to those described by Bell and 

Denny (1994) and Denny and Wethey (2000).  A drag element (a wiffle golf ball) was connected by 

a short length of fishing line to a spring housed in a short length of plastic pipe.  Any force imposed 

on the ball stretched the spring, and the maximum was recorded by a rubber slider on the fishing 

line.  The housing fit snugly into a hole in the substratum.  Details of the construction of the device 

can be found in Bell and Denny (1994) or at www.stanford.edu/group/Denny.   

To make a measurement, the slider was reset using forceps and the device was screwed into 

its emplacement.  After an appropriate period (typically 4 - 10 days), the device was recovered and 

the position of the slider was measured using Vernier calipers.  The larger the force imposed on the 

drag element, the larger the displacement of the slider.  The proportionality between applied force 

and displacement was determined in the laboratory for each device by holding the device ball-down 

and hanging known weights from the ball.  There are two salient differences between the device 

described by Bell and Denny and that used here.  First, the housing of the current device is mounted 

rigidly in the substratum.  Because the whole device does not need to reorient with the flow during 

the passage of a wave, the response time of the current model is substantially less than that of the 

Bell/Denny device.  Second, the shorter length of fishing line used in the current device (in the 

absence of drag, the ball is held less than 1 cm from the housing), allows the device to be installed 

in close proximity to organisms on the substratum.  The “sweep” of the drag element when 

subjected to a large force is approximately 10 cm, suggesting that the spatial extent of the 

measurements made by an individual dynamometer is a circle with a diameter of approximately 20 

cm. 

2. Wave Gauge.  



The calculation of significant wave height involves a correction for the attenuation of the 

wave-induced pressure signal as a function of depth. To avoid the possibility of artifacts due to this 

correction, the calculation of significant wave height was truncated at a wave frequency equal to 

approximately three times the peak frequency of the waves. 

3. Recording Thermometers.   

The thermometers were housed in 1.3-cm diameter CPVC pipes of the same length used for 

the dynamometers, and were similarly held in place by threaded male pipe fittings.  The bulb of the 

thermometer extended out of the housing into a hole drilled into a 2.5-cm diameter brass ball.  The 

ball (which was rigidly attached to the male pipe fitting by a threaded brass coupling) served both to 

protect the bulb of the thermometer and to ensure that the area of the device exposed to solar 

irradiance was independent of the angle at which the device was installed in the substratum.  The 

brass ball was coated with a thin layer of matte-black rubber.  To make a recording, the 

thermometer was briskly shaken to reset the column of mercury, and the housing was screwed into 

the emplacement in the substratum.  The device was retrieved at a later time (typically 1 - 7 days), 

and the maximum temperature was recorded.   

4. Topography.  

The topography of the substratum was measured along all transects. The objective of these 

measurements was to create an index of the topographic potential for a given location to be exposed 

to wave-induced hydrodynamic forces.  Experience led us to believe that this index should include 

(1) the horizontal angle (azimuth) of the local shore relative to the direction of wave approach, (2) 

the slope of the substratum at the location, and (3) the presence or absence of offshore obstacles in 

the path of wave approach.  A location with a vertical slope facing directly into oncoming waves 

with no offshore obstacles has the greatest potential to encounter large forces, whereas locations 



with lesser slopes facing obliquely to the waves and sheltered by obstructions have less potential.  

We propose that the following topographic index appropriately quantifies these ideas: 

 
c

cc
W

22
1sin]sin)[cos( bssw

+
++−×−

=
φφθθ

.     (D1) 

Here θw is the compass direction from which waves approach the shore, θs is the compass angle of 

the horizontal component of the location normal, and φs is the slope of the shore at the location 

( o900 s ≤≤ φ ).  φb is the blocking angle, the slope of a line drawn from the location to the top of the 

nearest “up-wave” obstacle ( o9090 b ≤≤− φ ). If the location is on a vertical surface facing into the 

oncoming waves, this line would be drawn directly down from the site to the water below 

( o90−=bφ ). If the location is on a vertical surface facing away from the waves, the line is drawn 

vertically up ( o90=bφ ).  W varies between 0 and 1.  As proposed, the index is highest for vertical 

locations (φs = 90o) that face the oncoming waves (θw = θs) without obstacles (φb = -90o) and is 

lowest for vertical locations on the down-wave sides of obstacles.  The value of c (which weights 

the contribution of offshore obstacles to the index) was chosen to provide the greatest correlation 

between W and maximum wave force.  A value of c = 0.6 was used here. See Helmuth and Denny 

(2003) for details of this index and its measurement. 

5. Microalgal Primary Productivity .  

Microalgal primary productivity was estimated as the rate of algal film accumulation in the 

absence of herbivores.  A 7.5 cm square settlement plate was installed at each location to measure 

the monthly accumulation of algal film.  Each plate was made of 0.5 cm thick polycarbonate plastic 

(Lexan) covered with gray, rugose, safety-walk sheet (3M Corp.).  These plates are a standard 

apparatus for measuring the recruitment of barnacles (Roughgarden et al. 1988).  Each settlement 

plate was attached to the rock by a stainless steel threaded rod, which had been glued into a hole 



drilled into the substratum.  A 10 cm square sheet of copper foil was sandwiched between the 

settlement plate and the substratum.  The resulting 1.25 cm border of copper served as an effective 

barrier to molluscan grazers.   

Upon retrieval, the microalgal film was removed by scrubbing the plates with a small brush 

and the algal tissue, mixed with seawater, was concentrated by spinning at 2500 rpm in a 

refrigerated centrifuge.  After pouring off the supernatant, the algal tissue was extracted in 

spectrophotometric grade acetone (90%). To ensure complete extraction, the volume of acetone 

ranged from 5 – 50 ml, depending on the volume of the algal sample.  Extractions were done at –20 

oC in complete darkness for 24 hours.  The concentration of chlorophyll a in the absence of grazing, 

assumed to be a rough proxy for microalgal primary productivity, was determined 

spectrophotometrically using standard techniques (Hill and Hawkins 1990).   

6. Temporal Variation in Physical Processes 

Temperatures representative of the body temperature of intertidal organisms were measured 

in February, 2002. A brass ball (2.5 cm diameter) was painted flat black and tapped with a ½” NPT 

pipe thread. A small temperature logger (iButton, Dallas Semiconductor) was inserted in this hole 

and the ball was then mounted (using a threaded PVC coupling) on the intertidal rock at one of the 

locations on our transects. This “body” temperature was recorded to the nearest 0.5oC every 10 

minutes for two weeks in February 2002. 

Gaps in the wave record from the Farallon Islands (due to equipment failure) were filled by 

linear interpolation.  11.7% of the time series was affected by gaps.  The largest single gap was 

3.3% of the overall time series. 
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Appendix E. Data Series and Spectra 

 The data series and associated spectra for our variables are shown in Figs. E1-E15. 

 

Figure Legends 

Figure E1. The signal, temporal spectrum, and log-log spectrum for solar irradiance at Hopkins 

Marine Station. 

Figure E2. The signal, temporal spectrum, and log-log spectrum for intertidal “body” temperature at 

Hopkins Marine Station. 

Figure E3. The signal, temporal spectrum, and log-log spectrum for sea-surface temperature at 

Hopkins Marine Station. 

Figure E4. The signal, temporal spectrum, and log-log spectrum for significant wave height at the 

Farallon Islands. 

Figure E5. The signal, temporal spectrum, and log-log spectrum for monthly measurement of the 

upwelling index. 

Figure E6. The signal, spatial spectrum, and log-log spectrum for maximum wave forces on the 

three transects at Hopkins Marine Station. 

Figure E7. The signal, spatial spectrum, and log-log spectrum for the topographic index on the three 

transects at Hopkins Marine Station. 

Figure E8. The signal, spatial spectrum, and log-log spectrum for relative maximum temperature on 

two of the transects at Hopkins Marine Station. 

Figure E9. The signal, spatial spectrum, and log-log spectrum for microalgal productivity on the 

medium transect at Hopkins Marine Station. 



Figure E10. The signal, spatial spectrum, and log-log spectrum for diversity index on the three 

transects at Hopkins Marine Station. 

Figure E11. The signal, spatial spectrum, and log-log spectrum for mussel abundance on the three 

transects at Hopkins Marine Station. 

Figure E12. The signal, spatial spectrum, and log-log spectrum for mussel disturbance on the three 

transects at Hopkins Marine Station. 

Figure E13. The signal, spatial spectrum, and log-log spectrum for mussel recruitment on the 

medium transect at Hopkins Marine Station. 

Figure E14. The signal, spatial spectrum, and log-log spectrum for predator abundance on the three 

transects at Hopkins Marine Station. 

Figure E15. The signal, spatial spectrum, and log-log spectrum for grazer abundance on the three 

transects at Hopkins Marine Station. 
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Fig. E2
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Fig. E3
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Fig. E4
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Fig. E5
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Fig. E6
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Fig. E7
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Fig. E8
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Fig. E9
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Fig. E10
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Fig. E12
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Fig. E13
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Appendix F. 1/f Noise, A Review 

Because 1/f noise is pervasive among our spatial variables, its basic attributes deserve a brief 

review. β (Eq. 8) typically ranges from 0 to 2. When β  = 0, the autospectral density S(f) is the same 

at all spatial frequencies.  This property is characteristic of processes known collectively as white 

noise.  In such a process, the value of a variable at any given location in time or space is 

independent of (and uncorrelated with) the variable at all other locations. In contrast, when β > 0, 

the lower the frequency (that is, the larger the spatial or temporal scale of variation), the larger the 

variance, and individual measurements are correlated to some extent. One particular case is worthy 

of note. When β  = 1, the spectrum is known as pink noise, and has the property that it is “the 

natural result of a mixture of different phenomena acting impartially on different scales” (Halley 

1996).  Although exactly how phenomena interact to yield this type of spectrum remains an area of 

active research, Halley (1996) makes a compelling argument that pink noise should be considered 

the null model for environmental and ecological variability.   

Pink noise forms an important boundary within 1/f-noise processes. For β ≥  1 and a 

maximal measurable frequency, fg, the integral 

 variancemeasurable  total
0

=∫
gf

df
f β
κ       (F1) 

is improper; it does not converge. In other words, for β ≥  1, the variance increases without limit as 

the scale of measurement is increased. This characteristic poses a problem for any definitive 

measurement of scale. In contrast, if 0 < β < 1, the integral in Eq. F1 does converge. In this case, as 

the scale of measurement increases, the variance of the process approaches a defined value, and a 

definitive measure of scale is feasible, although it still may be sensitive to the grain and extent of 

measurement (see Appendix B). 
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Appendix G. Is There An Alternative to 1/f Noise? 

 Can we be certain that our spectra are indicative of 1/f noise? Indeed, spectra with a shape 

roughly similar to that of 1/f noise can result from other models. In particular, it could easily be 

conceived that the ecological variables we have measured act as first-order autoregressive (AR1) 

processes. In this case, the value of a variable at one point in space or time depends in part on the 

value at an adjacent point, as well as on chance. For example, if we follow an autoregressive 

variable q through time: 

 εα +−= )1()( tqtq         (G1) 

where q(t) is the value of the variable at time t, and q(t-1) is the value at time t-1. α is the regression 

coefficient that determines how alike two adjacent points are (on average), and ε is a random 

variable that can be either positive or negative (Priestley 1981). Autoregressive processes can act in 

space as well as in time. 

The spectra of first-order autoregressive process are in some respects similar to those of 1/f 

noise (Fig. G1). For a portion of the spectrum, the log of the frequency-specific variance decreases 

approximately linearly with the log of frequency. The most important difference between the 

spectra of 1/f noise and autoregressive processes lies in the low-frequency tail. Whereas a 1/f-noise 

spectrum continues to increase without limit at low frequencies (for any β > 0), a first-order 

autoregressive spectrum “flattens out” and both the spectrum and the total variance approach a 

limit. The definable limit associated with an AR1 process is an appealing alternative to those 1/f-

noise processes for which β ≥  1.  

The applicability of autoregressive processes is most apparent for temporal data. If the 

current state of a variable depends at least in part on its state a moment ago, the process is 

intrinsically autoregressive (although not necessarily to first order). Furthermore, the directional 



nature of the autoregressive process described by Eq. G1 is in accord with the nature of time itself. 

Time’s “arrow” ensures that the state of a variable can depend on history, but cannot depend on the 

future. The application of Eq. G1 to spatial variables is less intuitive, and perhaps less appropriate. 

The state of a variable at location x might easily depend as much on what is happening at location 

x+1 as it does on location x-1, but this type of bi-directional dependence is not incorporated in the 

simple AR1 process described by Eq. G1. 

 The distinction between 1/f-noise and first-order autoregressive processes disappears under 

certain circumstances. When α is 1, Eq. G1 describes a random walk, which has a spectrum 

identical to that of a 1/f-noise process with β = 2. When α is 0, the result is equivalent to white 

noise, a 1/f-noise process with β = 0.  

 We compared our data (those for which there was no dominant spectral peak) to these two 

null models (1/f noise, AR1) by calculating on a log-log plot the mean squared error between our 

spectral estimates and either the best-fit line of a 1/f-noise process or the best-fit curve calculated 

for a first-order autoregressive process (Priestley 1981). In 18 of the 24 cases, the linear (that is, 1/f) 

fit yielded a smaller mean-squared error. Three of the six exceptions occurred on the short transect 

(maximum temperature, species diversity, and mussel disturbance). If these short-transect 

exceptions are indeed examples of an autoregressive process, the AR1 fit should be even more 

evident on the medium transect, which, with its greater extent, should reveal more of the flat, low-

frequency tail of the spectrum. In each case, however, on the medium transect a linear fit has a 

lower mean-squared error than does the AR1 fit. In only two cases (species diversity and grazer 

abundance) does the AR1 process provide the best fit on the long transect.  

Given the relatively small number of points in each of our spectra, and the relatively broad 

confidence limits on each spectral estimate (see Appendix E), it would be difficult to differentiate 



definitively between these two null models, but based on this preliminary evidence we proceed on 

the assumption that the overall spatial variation we have measured is better modeled by a 1/f-noise 

process rather than an autoregressive one. The average β among our variables is 0.69 (SD = 0.36). 

Thus, taken as a whole, our data are “pinkish” noise, in concert with the concepts discussed by 

Halley (1996), and in general they have a β < 1, which avoids the problems mentioned above 

regarding unlimited variance. 
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Figure Legend 

Figure G1. A comparison of the spectra for a 1/f-noise process and a first order autoregressive 

process. The spectra diverge at low frequencies. 
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Appendix H. Making Measurements in a 1/f-Noise Environment 

 The type of variation exhibited by our spatial variables (the larger the scale of measurement, 

the larger the associated variance) raises several practical issues, two of which we examine here. 

(1) We propose in the text that the measured spectrum of a phenomenon can be used in 

conjunction with a defined, biological measurement scale to quantify the variance, σ, encompassed 

by that scale (Fig 8). This approach is particularly useful if there is an inflection point (a “sill”) in 

this curve of σ vs measurement scale (Fig. 3B). Indeed, this inflection point was the basis for 

defining the variance scale (Eq. 7, B10). One might assume that 1/f-noise processes with 

β 1≥ would encounter problems with this approach. If the variance increases without limit as the 

spatial frequency gets smaller (as it does in this case), won’t the standard deviation increase 

problematically fast as the measurement scale increases, jeopardizing our ability to define the 

variance scale?  

In fact, the situation is not all that bad. Consider, for instance, the spatial pattern of primary 

productivity, which appears to be a 1/f-noise process with a β of 1.36 (Table 3). Despite the inverse 

relationship between variance and spatial frequency, the standard deviation of maximum force is 

most sensitive to changes in scale at small scales and a discrete v-scale can be discerned (Fig. H1A).  

The larger β is, the more sensitive the standard deviation becomes to changes in measurement scale 

at large scales (Fig. H1B), and therefore, the weaker our estimate of the v-scale. But for variables 

we have encountered (0 < β < 1.5) this behavior does not pose a serious problem for the estimate of 

scale. 

(2) In this report we have concentrated on measurements of the variation associated with 

ecological processes and the physical environment. Although variation is undoubtedly important, 

there are times where it is not the central issue. For example, one might want to explore the effect of 
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wave exposure on the rate at which snails prey on mussels. Two categories of sites could be chosen 

in which to measure predation intensity, those on exposed shores, and the others on protected, 

shores. It would then be traditional to characterize the exposure of each site by measuring some 

appropriate index (e.g., maximum wave force) at several points within the site, and calculating the 

mean. Significant differences between the mean exposures of the two categories of sites would 

validate the assumption that they do, indeed, represent different experimental treatments. However, 

our ability to discern differences in means is affected by the standard error of the mean (SEM). 

Given the type of spatial variation found in our study, how are the mean and its standard error 

affected?  

We approach this question by making the following calculation for each of our spatial 

variables. Each series of data with k number of points was divided into a set of contiguous 

segments, each of length n (n = 2,3,…k/3). The limit of k/3 is set so that we have at least three 

segments, as required for the calculations described below. The average value of the data within 

each segment was computed. These averages were themselves then averaged, and the standard 

deviation of the averages (by definition, the standard error of the segment mean) was calculated. For 

each value of n, the extent of the measurement was assumed to be (n-1)∆x, where ∆x is the spacing 

between locations (or times) at which the measurements were taken. A plot of the average of 

averages and the standard error as a function of the extent of measurement then provides the 

information we seek. 

In general, the extent of measurement has little practical effect on the mean itself. In 12 of 

25 cases there is a statistically significant trend in the measured value of the mean as a function of 

extent (9 with a negative slope, 3 with a positive slope), however, the trend is slight (Table H1). In 
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only two cases is the relative slope (the slope divided by the overall mean) greater than 1%, and on 

average the relative slope is only 0.3%.  

As one might expect, the standard error of the mean decreases with increasing measurement 

scale (e.g., Fig. H2). However, the autocorrelation of data within each series results in a rate of 

decrease that is less than one might expect. If data are independent (for instance, if β = 0), at a given 

scale of measurement the standard error of the mean varies as n-1/2 where n (the number of 

measurements) is in this case proportional to the extent of the data series. If fact, due to 

autocorrelation, the standard error decreases more slowly, varying on average ( ± SD) as 175.0334.0 ±−n  

for the spatial variables measured here. 

These results suggest that, despite the 1/f-noise pattern of variation in our spatial variables, 

there seems to be no unusual problem in quantifying the mean. As might be expected, the more 

samples one takes (in this case, implying a larger extent of measurement), the greater the confidence 

in the resulting average. 

We emphasize, however, that the ability to accurately measure a mean and the ability to 

interpret that mean, may not be the same. For example, on our short transect (with a length of 44 m) 

the average maximum wave force is 44 N when the offshore significant wave height is 2 m. 

However, within this short distance the largest force (157 N) exceeds the smallest (15 N) by a factor 

of greater than 10. Given this large amount of variation in such a short stretch of shore, how useful 

is the mean maximum force as an index of wave exposure? 
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Table H1. Scale dependence of the mean. ns = Not significant. Significance level is set at 0.002 

(0.05 with a Bonferroni adjustment for multiple comparisons). 
 
 Scale Dependence of the Mean 
 Units Mean Slope/Mean Probability 
Force     
    short 1/m 41.17 -0.0054 0.000 
    medium 1/m 42.45 ns 0.048 
    long 1/m 37.73 ns 0.939 
     
Wave Force Index     
    short 1/m 0.575 -0.0032 0.000 
    medium 1/m 0.551 ns 0.061 
    long 1/m 0.548 ns 0.016 
     
Temperature     
    short 1/m 0.765 ns 0.720 
    medium 1/m 0.793 0.0022 0.000 
     
Chlorophyll     
    medium 1/m 0.976 ns 0.195 
     
Diversity     
    short 1/m 0.576 ns 0.101 
    medium 1/m 0.5898 ns 0.049 
    long 1/m 0.557 0.000187 0.000 
     
Mussel Density     
    short 1/m 0.177 -0.01102 0.000 
    medium 1/m 0.217 -0.00231 0.000 
    long 1/m 0.149 ns 0.933 
     
Mussel Disturbance     
    short 1/m 0.027 -0.01285 0.000 
    medium 1/m 0.023 -0.00254 0.000 
    long 1/m 0.007 -0.0011 0.000 
     
Mussel Recruitment     
    medium 1/m 14.51 ns 0.027 
     
Predators     
    short 1/m 0.103 ns 0.259 
    medium 1/m 0.128 -0.00258 0.000 
    long 1/m 0.067 ns 0.024 
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Table H1 continued.     
     
Grazers     
    short 1/m 3.4 -0.00406 0.000 
    medium 1/m 3.02 ns 0.003 
    long 1/m 2.62 0.00068 0.000 
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Figure Legends 
 

Figure H1. A. Although its β > 1, the log-log curve of standard deviation versus measurement 

extent for microalgal productivity exhibits a clear inflection point, thereby allowing the 

variance scale to be measured. B. Standard deviation as a function of measurement 

extent for 1/f-noise processes with various βs. Unless β approaches 2, it is feasible to 

use the approximately linear regions of these curves at small and large measurement 

extent to unambiguously define a variance scale. 

Figure H2. The standard error of the mean maximum force decreases with the extent of 

measurement.  
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Fig. H2
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