
Ecological Archives M078-021-A5

Ecological Monographs, 78(4), 2008, pp. 523-545

Scaling from trees to forests: tractable macroscopic equations for forest dynamics.
Nikolay Strigul, Denis Pristinski, Drew Purves, Jonathan Dushoff, and Stephen Pacala

Appendix E. Flat-top model: Stability of the single-species stationary state given by (24-26) in the text.

Appendix B shows that, if η(D, t) and ε(t) are small per-
turbations of the stationary distribution (24) and equilib-
rium canopy-tree diameter respectively, then ε(t) is of the
same order as η(D, t). Thus, a small amount of cutting or
planting means a correspondingly small change in D∗. Also,
it is easy to show that dε(t)

d t
is of order ε(t) or smaller. This

means that we can chose the initial perturbation to be small
enough so that dD∗/d t immediately after perturbation is of
smaller order than GD and GL , and this, in turn, ensures that
each cohort after perturbation will cross into the canopy
only once (unlike the second oldest cohort in Figure 17b).

Now imagine that we perturb an equilibrium monocul-
ture by cutting a few canopy trees. This causes the canopy
height to decrease instantaneously D̂∗ > D∗(t0) = D̂∗ + ε(t0).
Although we consider the case in which the perturbation
ε(t0) is negative and in which only canopy trees are per-
turbed, similar arguments for the other cases lead to the
same stability criterion. Now, let γ(τ) be the fraction of trees
cut in the cohort that crossed into the canopy τ years before
the perturbation. We must now consider three classes of co-
horts:

1. Cohorts in the canopy, both before and after the per-
turbation.

2. Cohorts which crossed into the canopy at the mo-
ment of the perturbation.

3. Cohorts in the understory before and immediately af-
ter the perturbation or cohorts not born until after
the perturbation.

Then the equation for canopy height at time t is:

1=

∫ ∞

0

(1− γ(τ))Fe−θ1 D̂∗ e−µLτ+tα(D̂∗ + GL(τ+ t))2dτ

+

∫ D̂∗

D̂∗+ε(t0)

Fe−θ1(D)e−µL tα(D+ GL t)2dD/GL

+

∫ t

0

Fe−θ1(D̂∗+ε(t−τ))e−µLτα(D̂∗ + ε(t −τ) + GLτ)
2dτ,

(E-1)

where θ1 =
µD

GD
.

The first term in (E-1) governs cohorts in class one. It
gives the sum at time t of the uncut fraction (1 − γ(t)) of
crown areas of all cohorts that had crossed into the canopy
τ years before the perturbation (i.e. they have spent t + τ

years in the canopy). The second term describes class 2.
Here, to make the calculations easier, we integrate over the
initial sizes of the cohorts, rather than their ages. The third
term governs class 3 cohorts, which have spent less than t

years in the canopy. The variable of integration (τ) is the

amount of time that the cohort has been in the canopy at
time t.

To derive a relation between ε(t0) and γ(τ), we note
that at the moment of perturbation we have:

(E-2)
∫ ∞

0

γ(τ)Fe−θ1 D̂∗ e−µLτα(D̂∗ + GLτ)
2dτ=

∫ D̂∗

D̂∗+ε(t0)

Fe−θ1 DαD2dD.

The left-hand integral is the total area lost because of the
perturbation and it is balanced on the right-hand side by
the area gained by the resulting drop in D∗. Since the initial
perturbation ε(t0) is small we can linearize the integral in
the right hand side of (E-1) to get

(E-3)
∫ D̂∗

D̂∗+ε(t0)

Fe−θ1 DαD2dD ≈−ε(t0)Fe−θ1 D̂∗αD̂∗2.

We now substitute this result into (E-2) and rearrange:

(E-4) ε(t0)≈−

∫∞

0
γ(τ)Fe−θ1 D̂∗ e−µLτα(D̂∗ + GLτ)2dτ

Fe−θ1 D̂∗αD̂∗2
=

−
∫ ∞

0

γ(τ)e−µLτ

�

1+
GL

D̂∗
τ

�2

dτ.

Our objective is to derive dynamics of the perturbation
ε(t), if this is small, and so we linearize (E-1) by ignoring
terms of order ε2(t) or smaller. After linearizing and using
(E-3), (E-1) becomes:

1≈
∫ ∞

0

Fe−θ1 D̂∗ e−µL (τ+t)α(D̂∗ + GL(τ+ t))2dτ

−
∫ ∞

0

γ(τ)Fe−θ1 D̂∗ e−µL (τ+t)α(D̂∗ + GL(τ+ t))2dτ

− e−µL t Fαε(t0)e
−θ1 bD

∗
α(bD∗ + GL t)2

+

∫ t

0

Fe−θ1 D̂∗ e−µLτα(D̂∗ + GLτ)
2dτ

−
∫ t

0

ε(t −τ)θ1 Fe−θ1 D̂∗ e−µLτα(D̂∗ + GLτ)
2dτ

+

∫ t

0

ε(t −τ)Fe−θ1 D̂∗ e−µLτα2(D̂∗ + GLτ)dτ.

(E-5)

The sum of the first and the forth terms is one because it
equals the right hand side of the PPA equation at the sta-
tionary state (71), and so we have:
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0≈−
∫ ∞

0

γ(τ)Fe−θ1 D̂∗ e−µL (τ+t)α(D̂∗ + GL(τ+ t))2dτ

− e−µL t Fαε(t0)e
−θ1 bD

∗
α(bD∗ + GL t)2

−
∫ t

0

ε(t −τ)θ1 Fe−θ1 D̂∗ e−µLτα(D̂∗ + GLτ)
2dτ

+

∫ t

0

ε(t −τ)Fe−θ1 D̂∗ e−µLτα2(D̂∗ + GLτ)dτ.

(E-6)

Like the second term, the first term is of the form e−µL tQ(t2)

where Q(t2) is a quadratic function of time because:

∫ ∞

0

γ(τ)Fe−θ1 D̂∗ e−µL (τ+t)α(D̂∗ + GL(τ+ t))2dτ=

= e−µL t

∫ ∞

0

γ(τ)Fe−θ1 D̂∗ e−µLτα(D̂∗ + GLτ)
2dτ

+ e−µL t 2tGL

∫ ∞

0

γ(τ)Fe−θ1 D̂∗ e−µLτα(D̂∗ + GLτ)dτ

+ e−µL t t2

∫ ∞

0

γ(τ)Fe−θ1 D̂∗ e−µLταG2
L dτ.

(E-7)

Thus, (E-6) becomes:

(E-8) 0≈−
∫ t

0

ε(t −τ)θ1e−µLτ(D̂∗ + GLτ)
2dτ+

∫ t

0

ε(t −τ)e−µLτ2(D̂∗ + GLτ)dτ+ e−µL tQ(t2).

We now substitute a new variable ζ= t−τ into (E-8), divide
through by e−µL t

(E-9) 0≈ θ1

∫ t

0

ε(ζ)eµLζ(D̂∗ + GL(t − ζ))2dζ−

∫ t

0

ε(ζ)eµLζ2(D̂∗ + GL(t − ζ))dζ+Q(t2),

and differentiate three times with respect to t. Then we get
the second order homogeneous differential equation with
respect to ε(t)

(E-10) 0≈ ε′′(t)
�

µD

GD

(D̂∗)2 − 2D̂∗
�

+

ε′(t)
�

µLθ1(D̂
∗)2 − 4µL D̂∗ + 4GLθ1 D̂∗ − 2GL

�

+

ε(t)
�

4G2
Lθ1 + 2µ2

L

µD

GD

(D̂∗)2 + 4GLµL

µD

GD

D̂∗ −µ2
L2D̂∗ − 2GLµL

�

.

To find the general solution of this equation we substitute
ε(t) = eλt and after algebraic transformations we get the
following eigenvalue equation:

(E-11) 0= D̂∗(2−θ1 D̂∗)(λ+µL)
2+2GL(1−θ1 D̂∗)(λ+µL)−2θ1G2

L .

We note that a simple shortcut to (E-11) is to substitute
ε(t) = eλt directly into equation (E-9).

The stationary state D̂∗ is stable when Re[λ]< 0. To find
a domain in the parameter manifold where D̂∗ is stable let
us denote Λ = (λ+µL), then for the real part of Λ we have

(E-12) Re[Λ1,2] =

Re[
−GL(1− θ1 D̂∗)± GL

p

(1− θ1 D̂∗)2 + 2D̂∗(2− θ1 D̂∗)θ1

D̂∗(2− θ1 D̂∗)
]

From (E-12) we have the following intervals for Λ:

1. 1+
p

2 < D̂∗θ1 - two complex eigenvalues with nega-
tive real parts.

2. 2< D̂∗θ1 ¶ 1+
p

2 - two negative real eigenvalues.

3. 1 ¶ D̂∗θ1 < 2 - two real eigenvalues, one positive and
one negative.

4. Also, from (E-11) we have that if D̂∗θ1 = 2 there is
one negative real eigenvalue.

These results for groups 1-3 (but not group 4) hold for
λ as long as µL is small (so that λ ≈ Λ). Also, if D̂∗θ1 is less
than or equal to one, then inequality (23) is violated and so
the species cannot invade an empty habitat (to prove this,
see equation (F-1).

The quantity D̂∗θ1, is simply the natural logarithm of
the expected lifetime reproductive success of a tree that has
just made it to the canopy at equilibrium (see eg. 24 and
26 in the main text). Thus, if this quantity is greater than
or equal to two, then the stationary distribution (24-26) in
the text is locally stable.

When 1 ¶ D̂∗θ1 < 2 the discriminant in (E-12) is posi-
tive and so there is one positive and one negative Λ . If the
absolute value of Λ is larger than µL then a positive eigen-
value λ exists, and, so then the stationary state is unstable.
However, it is easy to see that when 1¶ D̂∗θ1 < 2:
(E-13)

lim
D̂∗θ1→2−

−GL(1− θ1 D̂∗) + GL

p

(1− θ1 D̂∗)2 + 2D̂∗(2− θ1 D̂∗)θ1

D̂∗(2− θ1 D̂∗)
= +∞.

Therefore, if D̂∗θ1 is close enough to 2 then the subtrac-
tion of an equally small µL will not cause the largest λ to
be negative. If this quantity is less than 2 but greater than
one, then the stationary state is usually unstable and sim-
ulations show monotonic growth of D̂∗ followed by a rapid
crash and then a cycle of repeated episodes of growth and
crash. This oscillation is sufficiently exotic to require a sep-
arate treatment.
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