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Appendix C: Self-Thinning in the simplest case. Derivation of the Law of Constant Final Yield and
Yoda’s Law

Here we model the effects of variation in sapling size at
the time of planting, but it is also possible to use the same
methods to model variation in high-light growth rate. We
derive the Law of Constant Final Yield and the Yoda’s Law
under the simplest assumptions. Please note that the model
also predicts a variety of self-thinning asymptotes, different
from the -3/2 slope, under more sophisticated conditions
(see. Fig. 14c).

Firstly we assume for simplicity that trees die imme-
diately if they fall into the shade. This assumption is not
too restrictive in the context of data on self thinning be-
cause most plantations involve fast-growing shade intoler-
ant species.

Let N(s0, 0) be the density of saplings of size s0 at plant-
ing (t = 0). We define the integral of this function over all
initial sizes as N0 (i.e. the total density of saplings planted),
the mean initial size as s̄0, and the variance in initial size
as σ2. Before any individual is shaded, the total area of all
crowns is:
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The canopy closes when this total area equals one. A sim-
ple expression for the time of canopy closure, t∗, can be
obtained in the reasonable case of negligible µL , s̄0, and σ2:

(C-2) t∗ ≈
1

GL

p

αN0

.

Now let the biomass of a tree be ϕD2h, or using the
height allometry in the simulator (equation 3):

(C-3) Tree Biomass= ϕD2H2(1− e−
H1
H2

D) =

ϕ(s0 + GL t)2H2(1− e−
H1
H2
(s0+GL t)).

Total yield before t∗ is simply surviving tree density,
N0e−µL t , times tree biomass from (C-3) or:

(C-4) Total Yield=

N0e−µL tϕ(s0 + GL t)2H2(1− e−
H1
H2
(s0+GL t)), if t < t∗.

The canopy is closed for t > t∗, and so:

(C-5) 1=

∫ ∞

s∗0

N(s0, t)e−µL tα(s0 + GL t)2ds0,

where s∗0 is the size that the smallest canopy trees at time t

were at the time of planting. At time t, all trees that started
taller than s∗0 are in the canopy and have overtopped and
killed all trees that started smaller than s∗0. After canopy clo-
sure, trees are generally large enough that the overwhelm-
ing majority of their crown area, α(s0 + GL t)2, is due to di-
ameter growth since planting (GL t) rather than their initial
diameter (s0). We thus approximate diameter as GL t in the
integrand of (C-5), again assuming negligible µL , and solve
yielding:

(C-6) 1= N(t)αG2
L t2 or: N(t) =
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,

where N(t) is the density of surviving trees. Total yield after
t∗ is simply N(t) from (C-6) times tree biomass from (C-3):
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(s0+GL t)), if t > t∗.

To obtain the Law of Constant Final Yield from (C-2), (C-4)
and (C-7) we need only invert equation (C-2):

(C-8) N ∗0 (t) =
1

αG2
L t2

,

where N ∗0 (t) is the critical density for which time t is the
time of canopy closure. Thus, at any time t, a plot of plant-
ing density vs. total yield is given by (C-4) for initial densi-
ties less than N ∗0 (t), and so total yield will increase linearly
with initial density up to the critical density N ∗0 (t) (Fig. 13).
In contrast total yield is given by equation (C-7) for den-
sities greater than N ∗0 (t). Because initial density appears
nowhere in (C-7), yield is constant across all initial den-
sities greater than N ∗0 (t) (Fig. 13). Moreover, the critical
density (C-8) itself decreases as time increases. This is pre-
cisely the Law of Constant Final Yield.

To obtain Yoda’s Law, in Figure 14 we plot the log of
tree biomass (C-3) against the log of surviving tree density
(N0e−µL t if t < t∗ and equation (C-6) if t > t∗). Each se-
ries of dots in the figure represents a time trajectory for a
monoculture starting at a different planting density. Note
that each trajectory follows the line with slope -3/2 after
the kink which corresponds to the time of canopy closure.
Why does this occur? Again, taking initial size s0 to be a
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negligible fraction of total diameter after canopy closure,
we can substitute (C-6) into (C-3):
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Although this is not the three-halves thinning law, we
note that the tree height is approximately proportional to
tree diameter while trees are still young, i.e., the allometry
(3) is approximately: h = H1 D, for small diameters. Using
this approximation, (C-9) becomes:
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which is exactly the three-halves thinning law. In contrast,
note that if trees are large then the right-hand side of (C-9)
approaches ϕ/αN(t) and so the thinning exponent is neg-
ative one. Finally, please note that runs of the individual-
based simulator started with a single age cohort in planta-
tion also produce the Law of Constant Final Yield and Yoda’s
Law (Figures 13a and 14a).
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