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Appendix F. Perturbations to vital rate functions. 

 As a first simple example, consider the elasticity to the size-dependent survival function 

in a kernel of the form  

 ( , ; ) ( ; ) ( , ) ( , ) ( )dK y x s x g y x B x f yθ θ θ= + .      (F.1) 

Here B represents the net fecundity (including establishment probability) for a size x individual, 

and df  is the offspring size distribution. In this Appendix only, to simplify notation we write 

( , )s x θ  for the size-dependent survival instead of ( )sp x . Our Carlina model does not have this 

form because the fatality of flowering creates an interaction between reproduction and survival. 

To compute the overall elasticity of Sλ  to survival at all sizes we use a proportional perturbation, 

i.e. ( , )s x θ is perturbed to ( , ) ( , )s x s xθ ε θ+ . This perturbs the kernel (F.1) to 

( , ; ) ( ; ) ( , )K y x s x g y xθ ε θ+ , so the elasticity is therefore given by equation (10) with 

( , ) ( ; ) ( , )t tC y x s x g y xθ= . For elasticity to the mean survival the perturbation kernel is 

( , ) ( ) ( , )tC y x s x g y x=  and again equation (10) applies.  

 The effect of perturbing the variability in s depends on the pattern of variability in the 

unperturbed kernel. If s is time-varying, then the elasticity of Sλ  to the standard deviation of s is 

the difference between the overall elasticity and the elasticity to the mean. If s is time-invariant, 

then the elasticity to variability is by definition zero. To compute the sensitivity to added 

variance we perturb ( , )ts x θ  to ( , )t ts x zθ ε+  where tz is a white-noise process with mean 0, 

variance 1. The corresponding perturbation kernel is ( , ) ( , )t tH y x z g y x= . Because this H has 
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zero mean and is independent of the unperturbed kernel (as a consequence of g being time-

invariant), the sensitivity of Sλ  to the variance in s is therefore computed using equation (12),  

giving after some algebra 
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.  

 To compute the elasticity with respect to survival at a particular size 0x  we perturb 

( , )s x θ  to 
00 ,( , ) ( , ) ( )r xs x s x xθ ε θ δ+ . The corresponding perturbation kernel is 

00 ,( , ) ( , ) ( ) ( , )t r xC y x s x x g y xθ δ= , and letting 0r →  in equation (10) the result is  
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.      (F.2) 

For elasticity with respect to mean survival at size 0x  the perturbation to s is 
00 ,( ) ( )r xs x xε δ , 

giving elasticity  
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    (F.3) 

As usual, the response to added variability in survival at size 0x  depends on the pattern of 

variability in the unperturbed kernel.  If survival at size 0x  is time-varying, the elasticity of Sλ  to 

the standard deviation of 0( , )ts x θ  is the difference between (F.3) and (F.2). If survival at size 0x  

is time-invariant then (as usual) the elasticity and sensitivity to the standard deviation of added 

variance are zero. To compute the sensitivity to the variance of added variability, we perturb 

( , )ts x θ  to 
0,( , ) ( )t t r xs x z xθ ε δ+ , so the perturbation kernel is 

0,( , ) ( ) ( , )t t r xH y x z x g y xδ=  and the 
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sensitivity can be computed using (12), giving  
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 As a more complicated example, consider the elasticity to flowering probability at some 

size 0x  in our Carlina model   

( , , ) ( ; ) (1 ( ; )) ( , ; ) ( ; ) ( ; ) ( ; ) ( )f f n d eK y x s x p x g y x p x f x f y p tθ θ θ θ θ θ θ⎡ ⎤= − +⎣ ⎦ . (F.4) 

To compute the elasticity of Sλ  to 0( , )f tp x θ , we perturb ( , )f tp x θ  to 

00 ,( , ) ( , ) ( )f t f t r xp x p x xθ ε θ δ+ . The kernel is then perturbed by  

( )
00 ,( , ) ( ) ( , ) ( ) ( , ) ( , ) ( , )f r x e n dp x x s x p t f x f y g y xε θ δ θ θ θ − , so the perturbation kernel is  

( )
00 ,( , ) ( , ) ( ) ( , ) ( ) ( , ) ( , ) ( , )t f r x e n dC y x p x x s x p t f x f y g y xθ δ θ θ θ= − .  (F.5) 

Proceeding as above the elasticity of Sλ to 0( , )f tp x θ  is   
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.    (F.6) 

This is hardly beautiful, but easy to compute from one long run of the unperturbed model. The 

elasticity to the mean flowering probability at size 0x  is given by (F.6) with 0( )fp x  in place of 

0( , )f tp x θ , and the difference between (F.6) and the elasticity to the mean gives the elasticity to 

the standard deviation 

 As the examples illustrate, the possibilities are limited only by your imagination and your 

willingness to do algebra.  




