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Appendix B. Statistical estimation and validation of PGLMMs. 

 

Description of the estimation method 

 To fit the PGLMM models to data, we used a combination of penalized quasi-likelihood 

(PQL) (Schall 1991, Breslow and Clayton 1993) and restricted maximum likelihood (REML) 

(Harville 1974, Zeger and Liang 1985, Liang and Zeger 1986) for estimating the fixed and 

random components of the models, respectively.  Let 

 

 C   l
2 l

l1

p

  (B.1) 

 

denote the working covariance matrix consisting of the sum of covariance matrices for p random 

effects (e.g.,  kron(Im, 2
sppspp) and kron(2

siteIm, In) for bi and csite[i], respectively in Eq. 1), and 

let V = C + W–1 where W is the nm  nm diagonal matrix with diagonal elements •(1 – ).  

Here,  

 

  
exp X  b 

1 exp X  b 
 (B.2) 

 

where X is the nm  q matrix containing independent variables (including categorical variables) 

corresponding to the fixed effects whose working coefficients are contained within the q  1 

vector , and B is the nm  1 vector containing working estimates of the sum of coefficients of 

the random effects for each data point.  Letting Z = X + B + (Y – )•(•(1 – ))–1, the updated 

values of the working estimates of  are 

 

  
X'V1Z

X'V1X
 (B.3) 
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

and the updated working estimates of B are  

 

 B  CV1 Z  X  (B.4) 

 

both of which are conditional on the working estimate of C that contains the estimates of the 

variances 2
l of the random effects component of the model. 

 Conditional on the working estimates of  and B, we estimated the variance components 

of the random effects 2
l by minimizing the negative log restricted likelihood function 

 

 L = sum log diag chol V    + 1

2
H'V1H +

1

2
log det X'V1X  + constant

2
 (B.5) 

 

where V = C + W–1 (see Eq. B.1), diag chol V   is the vector of diagonal elements of the 

Cholesky decomposition of V, H = Z – X, det() denotes the determinant, 

constant  nm  p log  log det X'VX  , and nm is the number of data points.  We minimized 

the log restricted likelihood function numerically using a simplex search routine (fminsearch.m 

in matlab); although slower than other methods, it proved to be very stable and always led to 

convergence. 

 For selection among models differing in both fixed and random effects using, for 

example, Akaike’s Information Criterion (Burnham and Anderson 2002), it is necessary to use 

maximum likelihood (ML) estimation rather than REML.  This can be done by replacing the 

negative restricted likelihood function in equation B5 with the negative likelihood function 

 

 L = sum log diag chol V    + 1

2
H'V1H +

nm

2
log . (B.6) 

 

 For overall estimation of model parameters, PQL estimation of coefficients  and B (Eqs. 

B.1–B.4) is alternated with REML (or ML) estimation of the random effects variances 2
l (Eq. 

B.5 or B.6) until convergence is achieved.  Profile likelihood estimates of the confidence 

intervals of 2
l are computed directly from Eqs. B.5 or B.6. 
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Investigation of the statistical properties of the PGLMMs 

 To investigate the statistical properties of our estimation of PGLMMs, we performed 

simulations for models I–IV.  In contrast to the simulations used in the main text, the simulations 

we perform here use the statistical model that we then fit to the simulated data.  This procedure is 

analogous to performing parametric bootstrapping to obtain inference about the estimators of 

coefficients in a model, but here we assign values to coefficients rather than first estimating them 

from a data set.  We perform these simulations under two scenarios: when the true values of the 

variance parameters of interest, namely spp, phylo, repulse, and trait, were greater than zero, and 

when they were zero (Table B1); the second scenario corresponds to the case in which there is no 

phylogenetic signal or trait-based pattern of community structure.  In both scenarios, the true 

value of site was greater than zero. 

 Information about the bias and precision of the estimators of  is given by the mean and 

range, respectively, of estimated values for the simulated data sets. In the scenario with 

phylogenetic signal, estimates of  tended to be downwards biased, and this bias was greatest for 

the target variance parameters (Table B1, Fig. B1).  There also tended to be negative correlations 

between these estimates and other variance components of the model. 

 Information about the accuracy and power of hypothesis testing and confidence intervals 

computed using profile likelihoods is given by counting the proportion of simulations in which 

the null hypothesis was rejected and the proportion of simulations for which the 95% confidence 

intervals excluded the true values of  used to simulate the data.  By definition of 95% 

confidence intervals, 2.5% of the data sets should have had the lower confidence bound above 

the true value of , and 2.5% should have had the upper confidence bound below the true value 

of .  In the scenarios without phylogenetic signal for which the true values of  = 0 (spp, phlyo, 

repulse and trait under the "No phylogenetic signal" heading), the expected number of rejections 

(false positive, or type I errors) of the null hypothesis H0: = 0 at an -level of 0.025 should be 

2.5% of the data sets.  For some models the rejection rates were lower than this, suggesting that 

the hypothesis test of H0: = 0 will generate false negatives (type II errors). 

 Although downwards bias and overly wide confidence intervals will in general decrease 

the rejection rate of the null hypothesis of no phylogenetic signal, the negative correlation 

between estimates of the variance parameters may lead to inflated rejection rates.  This negative 
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correlation implies that the estimation procedure has a difficult time attributing variance between 

the two possible sources.  If there is site-to-site variance in species occurrences (site > 0) and 

correlation in estimates, then part of the site-to-site variance may be attributed to spp or repulse in 

models I and III.  Similarly, in model II the covariance between phlyo and slope indicates 

difficulty in assigning phylogenetic signal to variation in slopes among species.  Given this 

uncertainty, we suggest performing bootstrapping when applying PGLMMs to real data sets. 

 

Comparison with lmer/Laplace 

 We tested our approach against the R package lmer (Bates et al. 2008) that uses the 

Laplace approximation to obtain the maximum likelihood estimates.  We did this because the 

literature shows that standard implementation of PQL estimation for binary processes does not 

perform well (Breslow and Clayton 1993, Austin 2010).  For these tests, we used a statistical 

model for binary processes that has simple blocked random effects (as opposed phylogenetic 

covariance matrices which lmer cannot fit): 

 

 Pr(Yi=1) = i 

i = logit–1( + b1 + b2) (B.7) 

b1 ~ N(0,
)

b2 ~ N(0,
) 

 

with n = 60, 10 categories in group 1 (i.e., b1 takes 10 values), 20 categories in group 2, group 2 

completely nested within group 1,  = 0, 
= 0.71, and 

= 0.32.  From 1000 bootstrap 

simulations, the mean estimates from lmer were  0.50 and 0.28 ± 0.44 (±SD) for 
and   

respectively (Fig. B2).  For our estimation methods the corresponding values were  0.43 

and 0.22 ± 0.31.  Thus, our estimate of 
was a little less biased, and our estimate of  was a 

little more biased than lmer, and the precision of our estimates was slightly higher.   
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TABLE B1. Parametric bootstrap exploration of the properties of the PGLMM models including the bootstrap mean and 95% inclusion 
interval of the distribution of estimates of , and the correlation between estimates; this provides information about the bias and 
precision of the estimators of   For each simulated data set, hypothesis tests (H0: = 0 at the  = 0.025 level) and 95% confidence 
intervals were computed using profile likelihoods.  The table reports the proportion of simulations in which the null hypothesis H0: = 
0 was rejected, and the proportion of simulations in which the true estimate of  was either below or above the 95% confidence 
interval.  In all cases communities consisted of 32 species on a balanced phylogeny and 20 sites. 

 
Model 

True 
value 

Bootstrap 
Mean 

95% inclusion 
interval 

 
Correlation

Reject 
H0: = 0

Below 95% 
conf. interval 

Above 95% 
conf. interval 

Model I (Eq. 1)        
spp 0.71 0.55 (0.06, 0.84) cor(phylo,slope)=–0.21 0.40 0.000 0.057 
site 0.71 0.68 (0.32, 1.01)  0.92 0.013 0.038 

No phylogenetic signal        
spp 0 0.19 (0, 0.60) cor(phylo,slope)=–0.21 0.028 0.028 0 
site 0.71 0.71 (0.40, 1.03)  0.98 0.026 0.024 

Model II (Eq. 2)        
phylo 0.71 0.59 (0, 1.03) cor(phylo,slope)=–0.44 0.76 0.016 0.109 
slope 0 0.19 (0, 0.57) cor(slope,site)=0.01 0.10 0.102 0 
site 0.71 0.70 (0.38, 0.98) cor(phylo,site)=0.10 0.98 0.013 0.035 

No phylogenetic signal        
phylo 0 0.19 (0, 0.73) cor(phylo,slope)=–0.40 0.089 0.089 0 
slope 0.71 0.63 (0.13, 0.96) cor(slope,site)=0.04 0.84 0.009 0.086 
site 0.71 0.70 (0.39, 1.00) cor(phylo,site)=0.03 0.99 0.015 0.028 

Model III (Eq. 3)        
repulse 0.71 0.66 (0.15, 0.87) cor(repulse,site)=–0.10 0.49 0.001 0.005 
site 0.5 0.48 (0.18, 0.77)  0.79 0.025 0.038 

No phylogenetic signal        
repulse 0 0.04 (0.01, 0.05) cor(repulse,site)=0.13 0.004 0.004 0 
site 0.5 0.55 (0.27, 0.84)  0.90 0.064 0.014 

Model IV (Eq. 7)        
trait 0.71 0.66 (0.05, 1.26) cor(trait,site)=–0.01 0.36 0.020 0.056 
site 0.5 0.50 (0.23, 0.77)  0.50 0.029 0.014 

No phylogenetic signal        
trait 0 0.003 (0.002, 0.004) cor(trait,site)=–0.43 0.000 0.000 0 
site 0.5 0.50 (0.23, 0.75)  0.87 0.022 0.022 
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FIG. B1. Bootstrap distributions of parameters  for (a,b) model I for phylogenetic patterns in 
species co-occurrences (Eq. 1), (c,d) model II for phylogenetic patterns in the sensitivities of 
species to and environmental gradient (Eq. 2), (e,f) model III for phylogenetic repulsion of 
related species (Eq. 3), and (g,h) model IV for trait values.  True values of  used to simulate the 
data are given by arrows and correspond to entries in Table B1 that contain phylogenetic signal. 
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FIG. B2. Bootstrap distributions of parameter  for (a) lmer, and (b) the estimation procedure we 
used for PGLMMs (PQL and REML).  The true value of 1 = 0.71 used to simulate the data is 
given by arrows. 
 
 


