
APPENDIX B: TUTORIAL ON USING THE REO PACKAGE

STEVEN C. WALKER AND DONALD A. JACKSON

Contents

I. Introduction 1
II. Using factanal.predictive 1
III. Using ltm.ecol 20

I. Introduction

In this appendix, we illustrate the use of our R package reo—for random effects ordina-
tion. The source code and manual for the functions in this package is available in Supple-
mentary material 2. The easiest way to get using reo is simply to paste the source code
into an R prompt. A tar archive of the package is also available from the first author.
This archive can be incorporated into the package library of R installations on unix-based
machines (e.g. linux; mac), using the following command in the shell / terminal: R CMD

INSTALL reo_1.0.tar.gz. Unfortunately, a zip file is not yet available for Windows R in-
stallations. However, we plan to put our package on CRAN shortly, which will allow it
to be loaded onto any (sufficiently recent) R installation. The package has two main func-
tions: factanal.predictive for continuous data and ltm.ecol for presence / absence data.
All of the data we use is available in Supplementary material 1, making our analyses fully
replicable.

II. Using factanal.predictive

We begin by loading the reo library.

> library(reo)

which contains the limn data set that we used in our paper,

> limn

area maxd vol shore elev pH ca cond

3 Island 1.36 0.85 0.88 0.43 2.56 6.09 0.35 1.34

Austin 1.28 0.41 0.70 0.57 2.53 5.60 0.38 1.34

Bear 1.98 1.56 1.95 0.99 2.55 6.40 0.43 1.48

Bentshoe 1.23 0.93 0.84 0.60 2.53 5.59 0.39 1.51

Big East 2.18 1.51 1.95 1.34 2.51 5.70 0.44 1.56

Big Orillia 1.66 1.08 1.37 0.58 2.51 6.10 0.41 1.46

Bloody 1.26 0.79 1.55 0.28 2.61 6.61 0.46 1.49

Blue Chalk 1.70 1.34 1.67 0.65 2.53 6.50 0.43 1.45

Brady 1.95 1.06 1.61 0.98 2.52 6.21 0.57 1.53
1

Buchanan 0.95 1.10 0.64 0.20 2.61 6.06 0.38 1.41

Cinder 1.89 1.56 1.81 1.06 2.52 5.35 0.33 1.38

Clayton 1.00 0.91 0.43 0.26 2.60 5.40 0.37 1.41

Crosson 1.76 1.37 1.68 0.59 2.53 5.91 0.31 1.37

Dan 1.23 1.19 1.00 0.32 2.53 5.89 0.38 1.41

Ernest 1.04 0.70 0.28 0.36 2.57 5.25 0.33 1.35

Fletcher 2.41 1.37 2.31 0.48 2.61 6.70 0.44 1.51

Grindstone 1.51 1.44 1.55 0.59 2.55 6.27 0.43 1.69

Gullfeather 1.84 1.11 1.52 0.72 2.51 5.51 0.34 1.39

Harvey 1.75 1.14 1.39 0.68 2.55 6.39 0.45 1.48

Herb 1.76 1.20 1.39 0.88 2.57 5.12 0.33 1.34

Jill 1.04 0.57 0.38 0.32 2.51 6.20 0.53 1.49

Kawagama 3.45 1.86 3.79 2.02 2.53 6.00 0.46 1.48

Kimball 2.33 1.83 2.68 0.99 2.55 6.81 0.42 1.47

L.Fletcher 1.79 1.48 1.90 0.23 2.61 6.56 0.43 1.49

L.Louie 1.04 0.74 0.28 0.04 2.60 6.52 0.54 1.57

L.Orillia 1.41 0.83 0.95 0.53 2.51 5.81 0.42 1.46

L.Troutspawn 1.51 1.38 1.40 0.41 2.61 6.83 0.52 1.53

L.Wren 1.20 1.09 0.82 0.49 2.54 5.80 0.43 1.48

Livingstone 2.28 1.56 2.38 0.94 2.58 6.56 0.47 1.52

Louie 1.49 1.63 1.72 0.43 2.60 6.50 0.53 1.54

McDonald 1.40 0.48 0.48 0.40 2.54 5.20 0.38 1.35

McFadden 1.73 1.48 1.80 0.46 2.60 6.00 0.51 1.56

McKeown 1.38 1.09 1.00 0.52 2.54 5.71 0.37 1.41

Millichamp 1.00 0.90 0.59 0.15 2.63 6.03 0.35 1.40

Poker 1.32 1.31 1.12 0.58 2.53 5.99 0.39 1.43

Poorhouse 1.48 1.12 1.09 0.49 2.62 6.90 0.49 1.62

Porcupine 1.75 1.34 1.47 0.72 2.51 5.90 0.45 1.45

Raven 2.75 1.62 2.66 1.61 2.54 6.32 0.37 1.43

Redchalk 1.76 1.51 1.80 0.69 2.53 6.43 0.41 1.48

Ridout 1.67 1.31 1.50 0.80 2.54 5.82 0.40 1.44

S.McDonald 1.08 0.81 0.56 0.20 2.54 5.60 0.37 0.95

Saucer 0.78 0.88 0.38 0.00 2.53 5.75 0.47 1.47

Shoe 1.59 1.23 1.33 0.72 2.55 6.02 0.40 1.45

South Jean 1.81 1.09 1.37 0.88 2.53 6.00 0.40 1.41

Sugarbowl 0.85 1.00 0.34 0.00 2.51 5.80 0.53 1.47

Sunken 1.11 0.74 0.48 0.49 2.56 5.81 0.33 1.35

Teapot 1.53 1.03 1.13 0.67 2.51 6.00 0.46 1.48

Tingey 1.18 0.86 0.95 0.36 2.55 4.79 0.36 1.39

Troutspawn 2.00 1.14 1.71 0.84 2.61 6.31 0.45 1.48

Wolf 1.97 1.37 1.75 1.00 2.69 6.50 0.38 1.42

Wren 1.70 0.99 1.24 0.75 2.54 5.88 0.39 1.46

Wrist 1.58 1.32 1.34 0.68 2.53 5.06 0.34 1.36

Note that if the source code is used (as opposed to the archive), then these data will have
to be entered manually. We then split limn into validation and training data,

2

> valid <- c(4, 35, 8, 42, 5, 38, 26, 1, 32, 6, 43, 30, 39, 46, 49,

+ 50, 48, 36)

> train <- setdiff(1:52, valid)

> limn.v <- limn[valid,]

> limn.t <- limn[train,]

This is the validation-training split that we randomly generated for the example in our paper.
As these data are continuous we consider fitting a factor analysis model to the training

lakes. But the factor analysis model assumes multivariate normality. A first graphical check
of this assumption can be made by looking at all possible pair-wise scatterplots of the data.

> pairs(limn.t)

area

0.5 1.5

●

●

●

●

●

●

●

●

●●

●

●
●●●

●

●

●

●

●
●

●

●

● ●
●

●●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●●

●

●
●●●

●

●

●

●

●
●

●

●

● ●
●

●●

●

●

●

●●●

0.0 1.5

●

●

●

●

●

●

●

●

●●

●

●
●●●

●

●

●

●

●
●
●

●

●●
●

●●

●

●

●

●●●
●

●

●

●

●

●

●

●

● ●

●

●
● ● ●

●

●

●

●

●
●

●

●

●●
●

● ●

●

●

●

● ●●

5.0 6.0

●

●

●

●

●

●

●

●

●●

●

●
● ●●

●

●

●

●

●
●

●

●

● ●
●

●●

●

●

●

●●●
●

●

●

●

●

●

●

●

●●

●

●
● ●●

●

●

●

●

●
●

●

●

●●
●

●●

●

●

●

●●●

1.0 1.6

1.
0

2.
5

●

●

●

●

●

●

●

●

●●

●

●
●●●

●

●

●

●

●
●

●

●

●●
●

●●

●

●

●

●●●

0.
5

1.
5

●

●

●

●●

●

●

●
●

●

●●

●●●

●

●●

●

●

●

●

●

●

●
●

●●

●

●● ●●

● maxd
●

●

●

●●

●

●

●
●

●

●●

●●●

●

●●

●

●

●

●

●

●

●
●

●●

●

●● ●●

●

●

●

●

●●

●

●

●
●

●

●●

●●●

●

●●

●

●

●

●

●

●

●
●

●●

●

●● ●●

●

●

●

●

● ●

●

●

●
●

●

●●

● ● ●

●

● ●

●

●

●

●

●

●

●
●

● ●

●

●●● ●

●

●

●

●

●●

●

●

●
●

●

●●

● ●●

●

● ●

●

●

●

●

●

●

●
●

●●

●

●●●●

●

●

●

●

●●

●

●

●
●

●

●●

● ●●

●

●●

●

●

●

●

●

●

●
●

●●

●

● ●●●

●

●

●

●

●●

●

●

●
●

●

● ●

●●●

●

●●

●

●

●

●

●

●

●
●

●●

●

●●●●

●

●

●
● ●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●●●
●

●
● ●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●● ●
vol

●

●
● ●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●●●
●

●
●●

●

●

●

●

●

●

●

●● ● ●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

● ●●
●

●
●●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●●●
●

●
● ●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●●●

0.
5

2.
5

●

●
●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●

●
●
●

●●

●

●

●

●●●

0.
0

1.
5

●

●

●

●

●

●

●
●

●● ●●●●
●

●

●

●

●
●

●●

●

●●
●

●●

●

●

●

●●● ●

●

●

●

●

●

●
●

●● ●●
●●
●

●

●

●

●
●

●●

●

● ●
●

●●

●

●

●

●● ● ●

●

●

●

●

●

●
●

●● ●●●●
●

●

●

●

●
●

●●

●

● ●
●

●●

●

●

●

●●●
shore

●

●

●

●

●

●

●
●
● ● ●●● ●

●

●

●

●

●
●
●●

●

●●
●

● ●

●

●

●

● ●● ●

●

●

●

●

●

●
●
●● ●●● ●

●

●

●

●

●
●

●●

●

● ●
●

●●

●

●

●

●●● ●

●

●

●

●

●

●
●

●● ●●
● ●
●

●

●

●

●
●

●●

●

●●
●

●●

●

●

●

●●● ●

●

●

●

●

●

●
●
●● ● ●●●

●

●

●

●

●
●

●●

●

●●
●

●●

●

●

●

●●●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●

●●
●

● ●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●
●

●
●

●

●

●

● ●

●

●

●●
●

●●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

● ●

●

●

●●
●

● ●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●

●●
●

● ●

●
●

elev
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

● ●

●

●

●●
●

●●

●
● ●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●

●●
●

●●

●
●

2.
52

2.
62

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●
●

●
●

●

●

●

●●

●

●

●●
●
●●

●
●

5.
0

6.
0

●

●
●

●
●

●●

●●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●●
●

●
●

●●

●

●

●
●

●
●

●●

●●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●●
●

●
●
●●

●

●

●
●

●
●

●●

●●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●●
●

●
●

●●

●

●

●
●

●
●

●●

●●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●●
●

●
●

●●

●

●

●
●

●
●

● ●

●●

●

●

●

●

●

●

●
●

●
●●
●

●

●

●

●
●

● ●
●

●
●
● ●

●

pH
●

●
●

●
●

● ●

● ●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●
●

●●
●

●
●

●●

●

●

●
●

●
●

●●

●●

●

●

●

●

●

●

●
●

●
●●
●

●

●

●

●
●
●●

●

●
●
●●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●●

●
●

●
●

●●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●●

●
●

●
●

● ●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●●

●
●

●
●

● ●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●●

●
●

●
●

●●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●
● ●

●
●

●
●

●●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●●

●
●

●
●

● ●
●

●

●
●

●

●

●

●

●

ca

0.
30

0.
50

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●●

●
●

●
●

●●
●

●

●
●

●

●

●

●

●

1.0 2.5

1.
0

1.
6

●

●● ●
● ●● ●●
●

●

●

●
●

●

● ●●●
● ●● ●

●
●● ●●

●

●
● ●●

● ●

●● ●
● ●● ●●

●

●

●

●
●

●

● ●●●
● ●● ●

●
●● ●●

●

●
●●●

●

0.5 2.5

●

●●●
● ●● ●●

●

●

●

●
●

●

● ●●●
● ●● ●

●
●● ●●

●

●
● ●●

● ●

●● ●
● ●● ●●
●

●

●

●
●

●

● ●●●
● ●● ●

●
●● ●●

●

●
● ●●

●

2.52 2.62

●

● ●●
●● ●●● ●

●

●

●
●

●

● ● ● ●
●●● ●

●
● ●● ●

●

●
●● ●

● ●

●●●
●●● ●●●

●

●

●
●

●

●● ●●
● ●● ●

●
● ●●●

●

●
●●●

●

0.30 0.50

●

●● ●
●● ●● ●

●

●

●

●
●

●

●●●●
●●● ●

●
●● ●●

●

●
●●●

● cond

As the pair-wise relationships display some obvious departures from linearity in the form of
outliers (e.g. a lake with unusually low conductivity), we conclude that some outlier removal
will be necessary. We use the pcout function in the mvoutlier package for this purpose.

3

> library(mvoutlier)

> pcout(limn.t)

$wfinal01

Austin Bear Bloody Brady Buchanan Cinder

1 1 1 1 1 1

Clayton Crosson Dan Ernest Fletcher Grindstone

1 1 1 1 1 0

Gullfeather Harvey Herb Jill Kawagama Kimball

1 1 1 1 0 1

L.Fletcher L.Louie L.Troutspawn L.Wren Livingstone McDonald

1 1 1 1 1 1

McKeown Millichamp Porcupine Ridout S.McDonald South Jean

1 1 1 1 0 1

Sugarbowl Teapot Wren Wrist

1 1 1 1

$wfinal

Austin Bear Bloody Brady Buchanan Cinder

0.8741966 1.0000000 0.9260756 0.3717855 0.9214016 0.8366668

Clayton Crosson Dan Ernest Fletcher Grindstone

0.5453381 0.9427834 1.0000000 0.6053479 0.6277903 0.1348551

Gullfeather Harvey Herb Jill Kawagama Kimball

0.9620812 1.0000000 0.6959360 0.5601415 0.1575620 0.8508286

L.Fletcher L.Louie L.Troutspawn L.Wren Livingstone McDonald

0.8754219 0.9178537 0.7460058 1.0000000 0.9727006 0.9277552

McKeown Millichamp Porcupine Ridout S.McDonald South Jean

1.0000000 0.4756180 1.0000000 1.0000000 0.0400000 1.0000000

Sugarbowl Teapot Wren Wrist

0.5675057 1.0000000 1.0000000 0.7762452

$wloc

Austin Bear Bloody Brady Buchanan Cinder

1.0000000 1.0000000 0.9900225 0.3760376 0.9440209 0.8012576

Clayton Crosson Dan Ernest Fletcher Grindstone

0.5341955 0.9726624 1.0000000 0.5567913 0.7450923 0.0000000

Gullfeather Harvey Herb Jill Kawagama Kimball

0.9526015 1.0000000 0.7504432 0.6479301 0.6230086 0.9412347

L.Fletcher L.Louie L.Troutspawn L.Wren Livingstone McDonald

0.9403072 1.0000000 0.7696601 1.0000000 0.9688461 0.9999937

McKeown Millichamp Porcupine Ridout S.McDonald South Jean

1.0000000 0.5796331 1.0000000 1.0000000 0.0000000 1.0000000

Sugarbowl Teapot Wren Wrist

0.8022376 1.0000000 1.0000000 0.7250102

$wscat
4

Austin Bear Bloody Brady Buchanan Cinder

0.84274579 1.00000000 0.91690874 0.67792334 0.95574941 0.99355046

Clayton Crosson Dan Ernest Fletcher Grindstone

0.83657942 0.95482894 1.00000000 0.92236783 0.73576018 0.59284461

Gullfeather Harvey Herb Jill Kawagama Kimball

1.00000000 1.00000000 0.83691834 0.72470964 0.03200246 0.86600151

L.Fletcher L.Louie L.Troutspawn L.Wren Livingstone McDonald

0.89915436 0.89731714 0.89315944 1.00000000 0.99695367 0.90969988

McKeown Millichamp Porcupine Ridout S.McDonald South Jean

1.00000000 0.64576121 1.00000000 1.00000000 0.00000000 1.00000000

Sugarbowl Teapot Wren Wrist

0.59270674 1.00000000 1.00000000 0.99396967

$x.dist1

Austin Bear Bloody Brady Buchanan Cinder

1.8867659 1.1011326 2.0730172 3.5246848 2.3305407 2.7396414

Clayton Crosson Dan Ernest Fletcher Grindstone

3.2530070 2.1957419 1.4087339 3.2136071 2.8609097 5.0070413

Gullfeather Harvey Herb Jill Kawagama Kimball

2.2946601 0.9698303 2.8498319 3.0499349 3.0956451 2.3416160

L.Fletcher L.Louie L.Troutspawn L.Wren Livingstone McDonald

2.3452471 1.1933683 2.8092891 1.7104232 2.2167646 1.8914416

McKeown Millichamp Porcupine Ridout S.McDonald South Jean

1.8021063 3.1733937 1.2273625 1.1697343 8.3365575 0.6634245

Sugarbowl Teapot Wren Wrist

2.7374132 1.5362141 1.7464071 2.9017500

$x.dist2

Austin Bear Bloody Brady Buchanan Cinder

2.5004983 1.1377209 2.3204768 2.8007545 2.1939609 1.9860505

Clayton Crosson Dan Ernest Fletcher Grindstone

2.5135362 2.1974707 1.5347777 2.3047240 2.7040453 2.9337612

Gullfeather Harvey Herb Jill Kawagama Kimball

1.7179099 0.8957770 2.5128251 2.7230470 3.8898589 2.4492071

L.Fletcher L.Louie L.Troutspawn L.Wren Livingstone McDonald

2.3686444 2.3733970 2.3840112 1.1808021 1.9461722 2.3405580

McKeown Millichamp Porcupine Ridout S.McDonald South Jean

1.0084458 2.8520737 1.3107836 0.7115855 5.0423570 0.9960534

Sugarbowl Teapot Wren Wrist

2.9339704 1.4787665 1.3242796 1.9818342

$M1

33.33333%

1.886766

5

$const1

[1] 4.520427

$M2

[1] 1.858655

$const2

[1] 4.100231

This function gives a great deal of output, allowing the analyst to explore the outlier structure
of the data in detail. Here we focus on scatter outliers (component wscat; see main text for
justification) and therefore further separate the training data into an outlier and non-outlier
component as follows.

> not.out <- which(pcout(limn.t)$wscat > 0.25)

> limn.t.out <- limn.t[setdiff(1:nrow(limn.t), not.out),]

> limn.t <- limn.t[not.out,]

The first line stores the indices for the data that were not determined to be scatter outliers
in not.out. We use a cut-off for the wscat index of 0.25 (the default in pcout). Now
limn.t.out are the outlying training data and limn.t are the training data with the outliers
removed. Here are the offending lakes.

> limn.t.out

area maxd vol shore elev pH ca cond

Kawagama 3.45 1.86 3.79 2.02 2.53 6.0 0.46 1.48

S.McDonald 1.08 0.81 0.56 0.20 2.54 5.6 0.37 0.95

and here is what the scatterplot matrix looks like with these two lakes removed.

> pairs(limn.t)
6

area

0.4 1.2

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●
●
●

0.0 0.6

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ● ●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●
●

●

5.0 6.0

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●

●

●●

●

●●
●

●

●
●

●

1.35 1.60

1.
0

2.
0

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●
●

●

0.
4

1.
2

●

●

●

●●

●

●

●
●

●

●●

●●●

●

●

●

●

●

●

●

●

●
●

●●
●● ●●

●

maxd
●

●

●

●●

●

●

●
●

●

●●

●●●

●

●

●

●

●

●

●

●

●
●

●●
●● ●●

●

●

●

●

●●

●

●

●
●

●

●●

●● ●

●

●

●

●

●

●

●

●

●
●

●●
●● ●●

●

●

●

●

● ●

●

●

●
●

●

●●

● ● ●

●

●

●

●

●

●

●

●

●
●

● ●
●●● ●

●

●

●

●

●●

●

●

●
●

●

●●

● ●●

●

●

●

●

●

●

●

●

●
●

●●
●●●●

●

●

●

●

●●

●

●

●
●

●

●●

● ●●

●

●

●

●

●

●

●

●

●
●

●●
● ●●●

●

●

●

●

●●

●

●

●
●

●

● ●

● ●●

●

●

●

●

●

●

●

●

●
●

●●
● ●●●

●

●

●
● ●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●
●

●●●

●

●●●

●

●
● ●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●
●

●●●

●

●●
● vol

●

●
● ●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●
●

●●●

●

●●●

●

●
●●

●

●

●

●

●

●

●

●● ● ●

●

●

●

●

●

●

●

●

●
●

● ●●

●

● ●●

●

●
●●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●
●

●●●

●

●●●

●

●
● ●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●
●

●●●

●

●●●

0.
5

2.
0

●

●
●●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●
●

●●●

●

●●
●

0.
0

0.
6

●

●

●

●

●

●

●

●

●●
●

●
●●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●
●

●
●●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●●

shore ●

●

●

●

●

●

●

●

● ●
●

●
● ●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●●
●

●
● ●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●●
●
●

● ●

●

●

●

●
●

●
●

●

●
●

●

●
●
●

●

●
●●

●

●

●

●

●

●

●

●

●●
●

●
● ●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●
●

● ●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●
●

●●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●
●

● ●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●
●

● ●

●
●

elev
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●
●

●●

●
● ●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●
●

●●

●
●

2.
52

2.
62

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●
●

●●

●
●

5.
0

6.
0

●

●
●

●
●

●●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●●
●

●
●●

●

●

●
●

●
●

●●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●●
●

●
●●

●

●

●
●

●
●

●●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●●
●

●
●●

●

●

●
●

●
●

●●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●●
●

●
●●

●

●

●
●

●
●

● ●

●●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●
●

● ●
●

●
● ●

●

pH
●

●
●

●
●

● ●

● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●●
●

●
●●

●

●

●
●

●
●

●●

●●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●●
●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●
●

●
●

●●
●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●
●

●
●

● ●
●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●
●

●
●

● ●
●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●
●

●
●

●●
●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●
●

●
●

●●
●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●
●

●
●

● ●
●

●

●●

●

●

●

●

ca

0.
30

0.
50

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●
●

●
●

● ●
●

●

●●

●

●

●

●

1.0 2.0

1.
35

1.
60

●

●●
●

●
●

●
●

●
●

●

●

●

●

●

● ●●

●
●

●
●

●
●●

●●
●

● ●●

● ●

●●
●

●
●

●
●

●
●

●

●

●

●

●

● ●●

●
●

●
●

●
●●

●●
●

●●●

●

0.5 2.0

●

●●
●

●
●

●
●

●
●

●

●

●

●

●

● ●●

●
●

●
●

●
●●

●●
●

● ●●

● ●

●●
●

●
●

●
●

●
●

●

●

●

●

●

● ●●

●
●
●

●

●
●●

●●
●

● ●●

●

2.52 2.62

●

● ●
●

●
●

●
●
●

●

●

●

●

●

●

● ● ●

●
●

●
●

●
● ●

● ●
●

●● ●

● ●

●●
●

●
●
●

●
●

●

●

●

●

●

●

● ●●

●
●

●
●

●
● ●

●●
●

●●●

●

0.30 0.50

●

●●
●

●
●

●
●

●
●

●

●

●

●

●

●●●

●
●

●
●

●
●●

●●
●

●●●

●

cond

There still appears to be an outlier (unusually high conductivity value) but we give pcout

the benefit of the doubt and proceed. Our general philosophy is to be somewhat liberal with
initial outlier detection, preferring to examine the data in the light of fitted models—which
are argued in the main text to be quite appropriate. If our models were clearly missing
certain data features, we would recommend either cutting more outliers or—better still—
making new models.

We use the factanal.predictive function in our reo package to fit a factor analysis
model.

> limn.t.fa <- factanal.predictive(limn.t, 2)

The second argument indicates that a two-axis model is to be fitted. The name, limn.t.fa,
refers to what is known in R-speak as an object of class factanal.predictive. Objects of
this class contain lots of information on the fitted models that they represent. To extract this
information, we have provided what are known in R-speak as methods for the ltm.ecol class
of objects. Such methods are alternative versions of common functions that will be familiar
to many R users (e.g. print, predict, etc.). Invoking the print method is particularly

7

easy, and simply involves typing the name of the object into the command line and pressing
enter.

> limn.t.fa

Call:

factanal(x = x, factors = factors, scores = "none")

Uniquenesses:

area maxd vol shore elev pH ca cond

0.121 0.327 0.005 0.344 0.798 0.005 0.471 0.446

Loadings:

Factor1 Factor2

area 0.937

maxd 0.812 0.116

vol 0.982 0.175

shore 0.753 -0.299

elev 0.445

pH 0.299 0.952

ca -0.128 0.716

cond 0.131 0.733

Factor1 Factor2

SS loadings 3.196 2.288

Proportion Var 0.400 0.286

Cumulative Var 0.400 0.685

Test of the hypothesis that 2 factors are sufficient.

The chi square statistic is 37.3 on 13 degrees of freedom.

The p-value is 0.000372

Alternatively, we could have typed the following to get the same output.

> print(limn.t.fa)

The first piece of information we get is simply the call to factanal that is made within
the function factanal.predictive; this is because our function is simply a modification of
factanal in the stats package that we have specifically tailored for predictive inference.
Next we get the uniquenesses for each variable (i.e. the proportion of observed variance that
is not explained by the axes). We see that elevation has a particularly large uniqueness, which
reflects the fact that it is not well correlated with the other variables (see the scatterplot
matrices above). The next piece of information is a table of loadings, which are the estimated
B coefficients (described in the main text) divided by the observed standard deviation of
the variable being summarized. These standardized coefficients (or loadings) describe how
each axis summarizes each variable. Large positive (negative) values mean that the variable
is positively (negatively) and linearly related to the axis. The next piece of information
describes the amount of variation explained by the axes. The first row (SS loadings) expresses
variation explained on a scale that goes from zero to the number of variables. The second
row express identical information but from zero to one, with the third row being cumulative.

8

It is important to note that these measures are not sensitive to differences among variables
in their observed variances—the measures are standardized. Finally, we have a significance
test, which in this case is highly significant indicating that perhaps two axes is not sufficient
to summarize the patterns of covariation in the training data. We will look at this possibility
in more detail using information criteria below.

Please note that for this particular method (i.e the print method), we actually use the old
method for factanal objects from the stats package. Because our factanal.predictive

function is a modification of factanal, we felt that it was not necessary to modify the
print method. However, we have written several other new methods that are specific to
factanal.predictive objects. For example, we can produce an ordination diagram with
our biplot method as follows.

> biplot(limn.t.fa)

−2 −1 0 1 2

−
2

−
1

0
1

2

Factor1

Fa
ct

or
2

Austin

Bear

Bloody

Brady
Buchanan

Cinder

Clayton

Crosson

Dan

Ernest

Fletcher

Grindstone

Gullfeather

Harvey

Herb

Jill
Kimball

L.Fletcher

L.Louie
L.Troutspawn

L.Wren

Livingstone

McDonald

McKeown

Millichamp

Porcupine
Ridout

South Jean
Sugarbowl Teapot

Wren

Wrist

−1.0 −0.5 0.0 0.5 1.0
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

area
maxd

vol

shore

elev

pH

ca cond

Here the names refer to the training lakes and the red arrows refer to the variables. This
plot is interpreted in largely the same way that we would interpret a principal component
analysis biplot. As noted in the main paper, we see that the first axis largely summarizes
lake size and the second largely lake chemistry.

Now to assess whether other numbers of axes are more or less appropriate than this two
axis model. We have developed a screeplot method for doing this.

> screeplot(limn.t.fa, stat = "AIC")
9

0

50

100

150

Screeplot for limn.t.fa

Number of axes

A
IC

1 2 3 4null full

The second argument specifies that AIC should be used. The default is to correct AIC
using the MAICc method we discuss and recommend in the main text (but this can be
changed). Here the three axis model minimizes MAICc and so we recommend examining this
model further, thereby illustrating some of the methods for exploring factanal.predictive

objects.

> limn.t.fa <- factanal.predictive(limn.t, 3)

> limn.t.fa

Call:

factanal(x = x, factors = factors, scores = "none")

Uniquenesses:

area maxd vol shore elev pH ca cond

0.088 0.316 0.005 0.161 0.418 0.124 0.045 0.317

Loadings:

Factor1 Factor2 Factor3

area 0.936 -0.167

maxd 0.813 0.136

vol 0.985 0.144

shore 0.743 -0.125 -0.521

elev 0.102 0.755

pH 0.331 0.769 0.419

ca -0.139 0.960 -0.116

cond 0.134 0.799 0.163

10

Factor1 Factor2 Factor3

SS loadings 3.208 2.213 1.106

Proportion Var 0.401 0.277 0.138

Cumulative Var 0.401 0.678 0.816

Test of the hypothesis that 3 factors are sufficient.

The chi square statistic is 8.26 on 7 degrees of freedom.

The p-value is 0.31

> deviance(limn.t.fa)

[1] -332.4640

> AIC(limn.t.fa)

MAICc

-232.7587

> biplot(limn.t.fa, axes = c(1, 3))

−2 −1 0 1 2

−
2

−
1

0
1

2

Factor1

Fa
ct

or
3

Austin

Bear

Bloody

Brady

Buchanan

Cinder

Clayton
Crosson

Dan

Ernest

Fletcher

Grindstone

Gullfeather

Harvey

Herb
Jill

Kimball

L.Fletcher

L.Louie

L.Troutspawn

L.Wren
Livingstone

McDonald

McKeown

Millichamp

Porcupine

Ridout

South Jean

Sugarbowl

Teapot

Wren
Wrist

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

area

maxd
vol

shore

elev

pH

ca

cond

> biplot(limn.t.fa, axes = c(2, 3))
11

−2 −1 0 1 2

−
2

−
1

0
1

2

Factor2

Fa
ct

or
3

Austin

Bear

Bloody

Brady

Buchanan

Cinder

Clayton
Crosson

Dan

Ernest

Fletcher

Grindstone

Gullfeather

Harvey

Herb
Jill

Kimball

L.Fletcher

L.Louie

L.Troutspawn

L.Wren
Livingstone

McDonald

McKeown

Millichamp

Porcupine

Ridout

South Jean

Sugarbowl

Teapot

Wren
Wrist

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

area

maxd
vol

shore

elev

pH

ca

cond

> predict(limn.t.fa)

$conditional.means

area

Austin 1.2687564

Bear 2.0080985

Bloody 1.5815321

Brady 1.9145971

Buchanan 1.0544543

Cinder 2.0110706

Clayton 1.0041917

Crosson 1.7742198

Dan 1.3603797

Ernest 0.9579385

Fletcher 2.0419003

Grindstone 1.6888355

Gullfeather 1.7710500

Harvey 1.6318338

Herb 1.7172096

Jill 1.0603853

Kimball 2.3895542

L.Fletcher 1.7626846

L.Louie 0.8497146

L.Troutspawn 1.5313707

L.Wren 1.3117253

Livingstone 2.2263371
12

McDonald 1.1327288

McKeown 1.4045637

Millichamp 0.9884217

Porcupine 1.7601324

Ridout 1.7541008

South Jean 1.6901084

Sugarbowl 1.0071733

Teapot 1.5477725

Wren 1.5818825

Wrist 1.6852763

$slope.coefs

area

maxd 0.001421171

vol 0.575524039

shore 0.207463512

elev -0.740933151

pH -0.084932273

ca 0.504499023

cond -0.080660185

$intercept.coefs

area

[1,] 3.013609

$residual.covariance

area

area 0.01753592

These results are discussed in the main text, but the last command using the predict method
deserves some more discussion on how to use it in practice.

In our use of predict above, we used the default settings. However, the function is very
versatile and can be used to make many different sorts of predictions via the responses and
predictors arguments. Each of these are vectors of indices referring to different variables.
For example, if we want to use variables one and two to predict variables three and four as
responses we would use the following command.

> predict(limn.t.fa, responses = c(3, 4), predictors = c(1, 2))

$conditional.means

vol shore

Austin 0.5655171 0.4716054

Bear 1.9631986 0.7801273

Bloody 0.7557037 0.4219085

Brady 1.6520766 0.8115355

Buchanan 0.5933880 0.2041502

Cinder 1.8659100 0.7258191

Clayton 0.5415340 0.2531355
13

Crosson 1.6194789 0.6661881

Dan 0.9462281 0.3641970

Ernest 0.4677225 0.2980671

Fletcher 2.3221186 1.0584140

Grindstone 1.3882499 0.5084004

Gullfeather 1.5610376 0.7402077

Harvey 1.4804706 0.6829289

Herb 1.5247235 0.6830218

Jill 0.3952625 0.3109400

Kimball 2.4920369 0.9645900

L.Fletcher 1.7132208 0.6733984

L.Louie 0.4900179 0.2941062

L.Troutspawn 1.3548068 0.5143417

L.Wren 0.8580601 0.3559965

Livingstone 2.2874938 0.9611546

McDonald 0.7342521 0.5370848

McKeown 1.0526372 0.4646129

Millichamp 0.5359602 0.2541258

Porcupine 1.5919476 0.6631245

Ridout 1.4887473 0.6178212

South Jean 1.5174604 0.7240854

Sugarbowl 0.4295511 0.1537099

Teapot 1.1813417 0.5610679

Wren 1.3428136 0.6676109

Wrist 1.3970326 0.5625228

$slope.coefs

vol shore

area 1.0809840 0.6034245

maxd 0.5573849 -0.0990219

$intercept.coefs

vol shore

[1,] -1.046670 -0.260179

$residual.covariance

vol shore

vol 0.042720608 -0.002733137

shore -0.002733137 0.034893079

The output we get is a list with four components. The first (conditional.means) gives
the point predictions for each of the response variables at each training lake; these are like
points on a regression line (or plane). The next two components (slope.coefs and inter-

cept.coefs) give the slopes and intercepts of these regressions. For example, the conditional
means for vol are given by: -1.046670 + 1.0809840area + 0.5573849maxd. The last compo-
nent (residual.covariance) gives the predicted covariance matrix of the residuals of these

14

regressions. These predictions were all in the training data. To make genuine out-of-sample
predictions, we specify newdata as in the following example.

> predict(limn.t.fa, limn.v, responses = c(3, 4), predictors = c(1,

+ 2))

$conditional.means

vol shore

Bentshoe 0.8013080 0.3899427

Poker 1.1104029 0.4066226

Blue Chalk 1.5378984 0.6329533

Saucer 0.2869960 0.1233528

Big East 2.1515261 0.9057633

Raven 2.8289994 1.2388228

L.Orillia 0.9401467 0.5084613

3 Island 0.8972452 0.4763097

McFadden 1.6483618 0.6371929

Big Orillia 1.3497389 0.6345620

Shoe 1.3576778 0.5774690

Louie 1.4725333 0.4775178

Redchalk 1.6975128 0.6523250

Sunken 0.5656868 0.3363460

Troutspawn 1.7507166 0.8337850

Wolf 1.8464856 0.7929072

Tingey 0.7082419 0.3667030

Poorhouse 1.1774572 0.5219847

$slope.coefs

vol shore

area 1.0809840 0.6034245

maxd 0.5573849 -0.0990219

$intercept.coefs

vol shore

[1,] -1.046670 -0.260179

$residual.covariance

vol shore

vol 0.042720608 -0.002733137

shore -0.002733137 0.034893079

Figure 3 in the main text was generated using the following single line.

> pairs(limn.t.fa)
15

area

0.4 1.2

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●
●
●

0.0 0.6

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ● ●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●
●

●

5.0 6.0

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●

●

●●

●

●●
●

●

●
●

●

1.35 1.60

1.
0

2.
0

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●
●

●

0.
4

1.
2

●

●

●

●●

●

●

●
●

●

●●

●●●

●

●

●

●

●

●

●

●

●
●

●●
●● ●●

●

maxd
●

●

●

●●

●

●

●
●

●

●●

●●●

●

●

●

●

●

●

●

●

●
●

●●
●● ●●

●

●

●

●

●●

●

●

●
●

●

●●

●● ●

●

●

●

●

●

●

●

●

●
●

●●
●● ●●

●

●

●

●

● ●

●

●

●
●

●

●●

● ● ●

●

●

●

●

●

●

●

●

●
●

● ●
●●● ●

●

●

●

●

●●

●

●

●
●

●

●●

● ●●

●

●

●

●

●

●

●

●

●
●

●●
●●●●

●

●

●

●

●●

●

●

●
●

●

●●

● ●●

●

●

●

●

●

●

●

●

●
●

●●
● ●●●

●

●

●

●

●●

●

●

●
●

●

● ●

● ●●

●

●

●

●

●

●

●

●

●
●

●●
● ●●●

●

●

●
● ●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●
●

●●●

●

●●●

●

●
● ●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●
●

●●●

●

●●
● vol

●

●
● ●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●
●

●●●

●

●●●

●

●
●●

●

●

●

●

●

●

●

●● ● ●

●

●

●

●

●

●

●

●

●
●

● ●●

●

● ●●

●

●
●●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●
●

●●●

●

●●●

●

●
● ●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●
●

●●●

●

●●●

0.
5

2.
0

●

●
●●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●
●

●●●

●

●●
●

0.
0

0.
6

●

●

●

●

●

●

●

●

●●
●

●
●●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●
●

●
●●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●●

shore ●

●

●

●

●

●

●

●

● ●
●

●
● ●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●●
●

●
● ●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●●
●
●

● ●

●

●

●

●
●

●
●

●

●
●

●

●
●
●

●

●
●●

●

●

●

●

●

●

●

●

●●
●

●
● ●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●
●

● ●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●
●

●●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●
●

● ●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●
●

● ●

●
●

elev
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●
●

●●

●
● ●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●
●

●●

●
●

2.
52

2.
62

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●
●

●●

●
●

5.
0

6.
0

●

●
●

●
●

●●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●●
●

●
●●

●

●

●
●

●
●

●●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●●
●

●
●●

●

●

●
●

●
●

●●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●●
●

●
●●

●

●

●
●

●
●

●●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●●
●

●
●●

●

●

●
●

●
●

● ●

●●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●
●

● ●
●

●
● ●

●

pH
●

●
●

●
●

● ●

● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●●
●

●
●●

●

●

●
●

●
●

●●

●●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●●
●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●
●

●
●

●●
●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●
●

●
●

● ●
●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●
●

●
●

● ●
●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●
●

●
●

●●
●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●
●

●
●

●●
●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●
●

●
●

● ●
●

●

●●

●

●

●

●

ca

0.
30

0.
50

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●
●

●
●

● ●
●

●

●●

●

●

●

●

1.0 2.0

1.
35

1.
60

●

●●
●

●
●

●
●

●
●

●

●

●

●

●

● ●●

●
●

●
●

●
●●

●●
●

● ●●

● ●

●●
●

●
●

●
●

●
●

●

●

●

●

●

● ●●

●
●

●
●

●
●●

●●
●

●●●

●

0.5 2.0

●

●●
●

●
●

●
●

●
●

●

●

●

●

●

● ●●

●
●

●
●

●
●●

●●
●

● ●●

● ●

●●
●

●
●

●
●

●
●

●

●

●

●

●

● ●●

●
●
●

●

●
●●

●●
●

● ●●

●

2.52 2.62

●

● ●
●

●
●

●
●
●

●

●

●

●

●

●

● ● ●

●
●

●
●

●
● ●

● ●
●

●● ●

● ●

●●
●

●
●
●

●
●

●

●

●

●

●

●

● ●●

●
●

●
●

●
● ●

●●
●

●●●

●

0.30 0.50

●

●●
●

●
●

●
●

●
●

●

●

●

●

●

●●●

●
●

●
●

●
●●

●●
●

●●●

●

cond

This pairs method is based on the predict method just described. In particular, it is the
slopes and intercepts that predict produces that are used to make the regression lines in
the graphs produced by this pairs method for factanal.predictive objects.

However, not all graphs in the manuscript can be made so easily. For example, Figure
2 was produced using the following code, which demonstrates that while the biplot and
screeplot methods are good for data exploration, specially made plots may be necessary
for publication purposes.

> dft <- par() # save the default graphics parameters to be reset after

plotting.

> par(mfrow=c(2,2),mar=c(4,4,5,3),tck=-0.05,mgp=c(3,1,0)) # adjust

graphics parameters

> d <- 3 # number of axes

> B <- limn.t.fa$loadings[] # extract standardized coefficients
16

> ve.d <- ve <- colSums(B^2)*(100/ncol(limn.t)) # variation explained

by each axis

> # calculate point sizes for lakes (proportional to latitude

> valid.cex <- 5*((0.05+lat[valid,]-min(lat))/(0.5+max(lat)-min(lat)))

> train.cex <- 5*((0.05+lat[train,]-min(lat))/(0.5+max(lat)-min(lat)))

> # calculate axis scores

> xt <- scores(limn.t.fa)

> xv <- scores(limn.t.fa,limn.v)

> # make screeplot

> screeplot(limn.t.fa,stat="AIC",main="",ylab="",grey.int=1)

> title(main="(A)",adj=0)

> title(ylab="MAICc",line=2.5)

> # make inset of variation explained

> par(new=TRUE,mar=c(10,11,5.5,2.6))

> hwid <- 0.4

> plot(1:d,ve.d,type="n",ylim=c(0,max(ve.d)),xlim=c(0,4),

+ xlab="",ylab="",axes=FALSE)

> for(i in 1:3){

+ rect(i-hwid,0,i+hwid,ve.d[i])

+ }

> par(tck=-0.05,mgp=c(3,0.2,0))

> axis(1,at=1:d,labels=1:d,cex.axis=0.7)

> par(mgp=c(3,0.5,0))

> axis(2,at=c(0,10,20,30,40),labels=c(0,10,20,30,40),las=1,cex.axis=0.7,

line=-0.4)

> title(xlab="Axis",cex.lab=0.7,line=1)

> title(ylab="% variance explained",cex.lab=0.7,line=1)

> # make biplots

> fig.let <- c("(B)","(C)","(D)")

> par(mar=c(4,4,5,3),tck=-0.05,mgp=c(3,1,0))

> indices <- rbind(c(1,2,1),c(2,3,3))

> for(k in 1:3){

+ i <- indices[1,k]

+ j <- indices[2,k]

+ plot(limn.t.fa$scores[,c(i,j)],cex=train.cex,

+ xlab="",ylab="",asp=1,las=1,col=grey(0.3),pch=1,

+ xlim=c(-1,1)*max(abs(c(xt))),

+ ylim=c(-1,1)*max(abs(c(xt))))

+ points(xv[,c(i,j)],pch=0,col=grey(0.3),cex=valid.cex)

+ title(main=fig.let[k],adj=0)

+ abline(h=0,lwd=0.5)

+ abline(v=0,lwd=0.5)

+ title(xlab=paste("Axis ",switch(i,"I -- morphology",

+ "II -- chemistry","III"),

+ " (",round(ve[i],1),"%)",sep=""),line=2)

17

+ title(ylab=paste("Axis ",switch(j,"I -- morphology",

+ "II -- chemistry","III"),

+ " (",round(ve[j],1),"%)",sep=""),line=2)

+ par(new=TRUE)

+ plot(B[,c(i,j)],type="n",xlab="",ylab="",axes=FALSE,

+ xlim=c(-1,1),ylim=c(-1,1))

+ text(B[,c(i,j)],labels=colnames(limn.t),cex=0.6,col="red")

+ axis(3,at=seq(-1,1,0.5),labels=seq(-1,1,0.5),col.ticks="red")

+ axis(4,at=seq(-1,1,0.5),labels=seq(-1,1,0.5),las=1,col.ticks="red")

+ for(l in 1:ncol(limn.t)){

+ mp <- (sqrt(sum(B[l,c(i,j)]^2))-0.1)/sqrt(sum(B[l,c(i,j)]^2))

+ arrows(0,0,mp*B[l,i],mp*B[l,j],lwd=0.3,length=0.05,col="red")

+ }

+ }

> par(dft) # restore original graphics parameters

18

0

50

100

150

Number of axes

1 2 3 4null full

(A)

M
A

IC
c

1 2 3

0

10

20

30

40

Axis

%
 v

ar
ia

nc
e

ex
pl

ai
ne

d

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●

●
●

●

●

●●

●

●

●

●

−2 −1 0 1 2

−2

−1

0

1

2

(B)

Axis I −− morphology (40.1%)
A

xi
s

II
−

−
 c

he
m

is
tr

y
(2

7.
7%

)

areamaxd
vol

shore

elev

pH

ca

cond

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

−2 −1 0 1 2

−2

−1

0

1

2

(C)

Axis II −− chemistry (27.7%)

A
xi

s
III

 (
13

.8
%

)

area

maxd
vol

shore

elev

pH

ca

cond

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

−2 −1 0 1 2

−2

−1

0

1

2

(D)

Axis I −− morphology (40.1%)

A
xi

s
III

 (
13

.8
%

)

area

maxd
vol

shore

elev

pH

ca

cond

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

19

III. Using ltm.ecol

We now consider the latent trait model analysis of the fish data, which can be displayed
using the following command if the reo package is loaded.

> fish

PS YP WS CC BB NRD GS BT SB BNM CS PD FSD LB BNS B FM LT BS BD ID C

3 Island 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

Austin 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Bear 1 1 1 1 0 0 1 0 1 1 0 0 0 0 1 1 0 1 0 0 0 0

Bentshoe 1 1 1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0

Big East 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Big Orillia 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1

Bloody 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 0

Blue Chalk 1 1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 0 1 0 0 0 0

Brady 1 1 1 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0

Buchanan 1 0 0 1 1 1 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0

Cinder 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Clayton 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Crosson 1 1 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Dan 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ernest 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fletcher 1 1 1 1 1 0 1 1 0 1 1 0 1 0 0 0 0 0 1 0 0 0

Grindstone 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Gullfeather 1 1 1 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

Harvey 1 1 1 1 1 0 0 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0

Herb 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Jill 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Kawagama 1 1 1 1 1 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 0

Kimball 0 1 1 1 1 1 0 1 1 0 0 0 1 0 0 1 0 1 1 0 1 0

L.Fletcher 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0

L.Louie 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0

L.Orillia 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1

L.Troutspawn 1 0 1 1 0 1 0 1 0 1 0 1 0 0 0 0 1 0 0 1 0 0

L.Wren 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

Livingstone 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0

Louie 1 1 1 1 1 1 0 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0

McDonald 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

McFadden 1 1 1 1 1 0 1 0 0 1 1 1 1 0 0 0 1 1 0 0 0 0

McKeown 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Millichamp 1 0 0 1 1 1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0

Poker 1 1 1 1 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

Poorhouse 1 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0

Porcupine 1 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0

Raven 1 1 1 1 1 0 1 0 1 1 1 0 0 0 1 1 0 1 0 0 1 0

Redchalk 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1 0 1 0 0

Ridout 1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
20

S.McDonald 1 1 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Saucer 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Shoe 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

South Jean 1 1 1 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0

Sugarbowl 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

Sunken 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Teapot 1 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1

Tingey 1 1 0

Troutspawn 1 0 1 1 1 1 1 1 0 1 1 1 0 0 0 0 1 0 1 0 0 0

Wolf 1 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Wren 1 1 1 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0

Wrist 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LC RB FF BM M RS LW NSS

3 Island 0 0 0 0 0 0 0 0

Austin 0 0 0 0 0 0 0 0

Bear 0 0 0 0 0 0 0 0

Bentshoe 0 0 0 0 0 0 0 0

Big East 0 0 0 0 0 0 0 0

Big Orillia 0 0 0 0 0 0 0 0

Bloody 0 0 0 0 0 0 0 0

Blue Chalk 0 0 0 0 0 0 0 0

Brady 0 0 1 0 1 0 0 0

Buchanan 0 0 0 0 0 0 0 0

Cinder 0 0 0 1 0 0 0 0

Clayton 0 0 0 0 0 0 0 0

Crosson 0 0 0 0 0 0 0 0

Dan 0 0 0 0 0 0 0 0

Ernest 0 0 0 0 0 0 0 0

Fletcher 0 0 0 0 0 0 0 0

Grindstone 0 0 0 0 0 0 0 0

Gullfeather 0 0 0 0 0 0 0 0

Harvey 0 0 0 0 0 0 0 0

Herb 0 0 0 0 0 0 0 0

Jill 0 0 0 0 0 0 0 0

Kawagama 1 1 0 0 0 0 1 1

Kimball 0 0 0 0 0 0 0 0

L.Fletcher 1 0 0 0 0 0 0 0

L.Louie 0 0 0 0 0 0 0 0

L.Orillia 0 0 0 0 0 0 0 0

L.Troutspawn 0 0 0 0 0 0 0 0

L.Wren 0 1 0 0 0 0 0 0

Livingstone 0 0 0 0 0 1 0 0

Louie 0 0 0 0 0 0 0 0

McDonald 0 0 0 0 0 0 0 0

McFadden 0 0 0 0 0 0 0 0

21

McKeown 0 0 0 0 0 0 0 0

Millichamp 0 0 0 0 0 0 0 0

Poker 0 0 0 0 0 0 0 0

Poorhouse 0 0 0 0 0 0 0 0

Porcupine 0 0 0 0 0 0 0 0

Raven 0 0 0 0 0 0 0 0

Redchalk 0 0 1 0 0 0 0 0

Ridout 0 0 0 0 0 0 0 0

S.McDonald 0 0 0 0 0 0 0 0

Saucer 0 0 0 0 0 0 0 0

Shoe 0 0 0 0 0 0 0 0

South Jean 0 0 0 0 0 0 0 0

Sugarbowl 0 0 0 0 0 0 0 0

Sunken 0 0 0 0 0 0 0 0

Teapot 0 0 0 0 0 0 0 0

Tingey 0 0 0 0 0 0 0 0

Troutspawn 0 0 0 0 0 0 0 0

Wolf 1 0 0 0 0 0 0 0

Wren 0 1 0 0 0 0 0 0

Wrist 0 0 0 0 0 0 0 0

We separate the same training lakes from fish that we did for limn.

> fish.t <- fish[train,]

We now fit the training data to a series of latent trait models using our ltm.ecol function,

> fish.t.ltm <- ltm.ecol(fish.t, lambda = seq(0.1, 4.1, 1))

log-likelihood at initial values: -335.9

[1] lambda params/spp iters log-like

[1] 0.1 4.4 46 -255.8

[1] 1.1 3.4 27 -301.7

[1] 2.1 2.7 14 -326.6

[1] 3.1 1.5 30 -361.4

[1] 4.1 1 10 -374.7

A report is printed as a series of lines that appear slowly on the screen as R estimates the
coefficients for each model. Each line corresponds to a different value of the regularization
parameter, λ = {0.1, 1.1, 2.1, 3.1, 4.1} (see first column in the report). These reports can be
suppressed by setting the verbose argument to FALSE, but we recommend against this as
they provide important information and reassure you that something is actually happening.
The second column gives the number of non-zero coefficients per species. Notice that this
decreases with λ because larger values of λ correspond to simpler models (i.e. with fewer
coefficients). The simplest models use only a single intercept parameter for each species—
these null models assume that species co-occurrences are not related to each other. Whenever
the simplest models use more than one parameter per species, the models should be re-fitted
using larger maximum λ values. The third column gives the number of iterations of the
EM-algorithm that were required to reach convergence. The maximum number of iterations
can be set using the maxit argument (default = 200). If the number of iterations is greater

22

than the maximum (not the case here), then it might be a good idea to try setting larger
values for maxit. If this results in prohibitively long computation times, then an option
is to lower the precision used to judge convergence using the digits argument (default =
1) to ltm.ecol. There is a trade-off here: lower numbers mean that fewer iterations are
required for convergence but also lead to less accurate approximations of the absolutely best
estimates. The last column gives the log likelihood at convergence. This decreases with λ
because simpler models always fit the data more poorly. However, the complex model may
not provide optimal out-of-sample predictions, as we will soon see.

At this point, we would like to emphasize some practical issues that may arise. It will be
common to have to re-run this function several times until an appropriate set of candidate
λ values is decided on. An important consideration is computation time—more λ’s takes
more time. In particular, later we will calculate CVIC values, which require n-times the
computational effort of simply fitting the models. See Section 10.1 of the main text for
other guidelines on choosing a set of λ values. Another issue is that—perhaps surprisingly—
one should not expect identical model fits for a particular value of λ within two different
candidate sets; this is because our fitting procedure is sensitive to initial conditions and uses
the fitted coefficients from the proceeding λ in the candidate set as initial values for the
current λ. However, although the quantitative details of model fits can change from one
candidate set to another, we have found that qualitative conclusions are quite robust. The
situation here is similar to non-metric multidimensional scaling algorithms (e.g. metaMDS in
the vegan package), which can be quantitatively (but usually not qualitatively) sensitive to
initial conditions.

Now let’s look at the fitted models. We may pass the fish.t.ltm object to the print

function to obtain the following output.

> print(fish.t.ltm, which.lambda = 1)

Call:

ltm.ecol(Y = fish.t, lambda = seq(0.1, 4.1, 1))

Coefficients:

(Intercept) axis I axis I^2 axis II axis II^2

PS 7.8 -0.1 -1.1 -0.2 -1.8

YP 9.8 -3.9 -2.3

WS 3.1 -0.3 -1.0 0.9

CC 5.7 4.6 -1.5 0.5

BB 2.2 0.5 -0.8 0.3 -0.3

NRD -0.3 4.7 -2.0 -0.5

GS 1.5 -1.2 -0.2 -0.3

BT -1.4 3.3 0.9 -0.6

SB -3.6 -2.7 8.0

BNM 0.0 0.6 -0.5 0.7 -0.9

CS -0.1 0.8 -0.9 1.7 -1.0

PD -2.0 4.8 -1.6 -0.1 -0.5

FSD -1.9 5.5 -2.2 2.4 -0.6

LB -2.0 -5.8 -2.1 -1.3 -1.6

BNS -0.5 0.0 -0.5 0.3 -0.7
23

B -1.5 0.4 -3.2 4.0

FM -1.7 4.9 -1.4 -4.2

LT -3.5 1.2 -1.0 2.9 0.0

BS -1.8 5.5 -7.4 2.1

BD -1.4 2.7 -1.2 0.0 -3.0

ID -5.3 -2.8 4.7

LC -2.0 2.7 -4.9 1.3 -0.1

RB -3.7 -2.1 -4.1 4.3 -0.4

We used the which.lambda argument to specify the model to print—here we use the first
model with λ = 0.1. The printed output reports the line of code used to fit the models
(under the heading, ‘Call’), and the fitted model coefficients in a table. The rows of the
table correspond to species and the columns correspond to the intercept and linear and
quadratic terms for each axis. Note that some coefficients are missing, because they were
set to zero by the LASSO. For example, YP has no coefficients on the second axis, which
implies that this axis summarizes no information about YP. We can also print the coefficients
associated with the other values of λ.

> print(fish.t.ltm, which.lambda = 2)

Call:

ltm.ecol(Y = fish.t, lambda = seq(0.1, 4.1, 1))

Coefficients:

(Intercept) axis I axis I^2 axis II axis II^2

PS 4.7 0.0 -0.3 0.2 -0.8

YP 4.1 -1.1 -0.5 0.7 -0.1

WS 2.1 -0.1 -0.3 0.7

CC 3.4 1.5 -0.7

BB 1.7 0.2 -0.3 0.3 -0.2

NRD -0.2 1.2 0.0

GS 1.3 -0.6 -0.3

BT -1.1 1.5

SB -0.8 -0.6 1.2

BNM -0.7 0.4 0.4 -0.3

CS -0.8 0.2 -0.1 0.8 -0.2

PD -1.3 1.3 -0.2

FSD -1.5 1.2 0.9

LB -2.1 -1.8 -0.2 -0.1

BNS -1.3 0.0 -0.1

B -1.3 -0.4 1.4

FM -2.2 1.4 -0.2

LT -2.8 0.1 1.4

BS -2.3 0.2 -0.1 1.0

BD -2.5 0.8 -0.1

ID -3.6 1.7

LC -3.0 0.7

RB -2.7 0.0 1.0
24

> print(fish.t.ltm, which.lambda = 3)

Call:

ltm.ecol(Y = fish.t, lambda = seq(0.1, 4.1, 1))

Coefficients:

(Intercept) axis I axis I^2 axis II axis II^2

PS 2.7 -0.3

YP 3.3 -0.6 -0.3 0.3 -0.1

WS 1.9 -0.2 0.5 0.0

CC 2.5 0.9 -0.4

BB 1.0 0.1 -0.1 0.1

NRD -0.2 0.8

GS 1.1 -0.4 -0.3

BT -0.9 0.9

SB -0.7 -0.3 0.7

BNM -0.9 0.2 -0.1

CS -1.2 0.1 0.0 0.4

PD -1.4 0.9 0.0

FSD -1.2 0.8 0.5

LB -1.9 -1.0

BNS -1.5 0.0

B -1.4 -0.1 0.8

FM -2.3 1.0

LT -2.4 0.9

BS -2.3 0.8

BD -2.5 0.6

ID -2.9 1.0

LC -2.9 0.5

RB -2.5 0.6

> print(fish.t.ltm, which.lambda = 4)

Call:

ltm.ecol(Y = fish.t, lambda = seq(0.1, 4.1, 1))

Coefficients:

(Intercept) axis I axis I^2 axis II axis II^2

PS 2.0

YP 3.2 -0.5

WS 1.9 -0.3

CC 1.4 0.3

BB 0.7

NRD -0.3 0.5

GS 0.1 0.0

BT -0.8 0.5

SB -0.5 -0.1

BNM -1.0
25

CS -1.2

PD -1.4 0.6

FSD -1.1 0.5

LB -1.4 -0.3

BNS -1.5

B -1.3

FM -2.1 0.8

LT -2.0

BS -2.0

BD -2.4 0.3

ID -2.3

LC -2.8

RB -2.3

> print(fish.t.ltm, which.lambda = 5)

Call:

ltm.ecol(Y = fish.t, lambda = seq(0.1, 4.1, 1))

Coefficients:

(Intercept) axis I axis I^2 axis II axis II^2

PS 2.0

YP 2.0

WS 1.3

CC 1.3

BB 0.7

NRD -0.2

GS 0.0

BT -0.7

SB -0.6

BNM -1.0

CS -1.2

PD -1.2

FSD -1.0

LB -1.3

BNS -1.5

B -1.3

FM -1.8

LT -2.0

BS -2.0

BD -2.3

ID -2.3

LC -2.8

RB -2.3

Notice that more and more coefficients are missing as λ is increased. The last model (with
λ = 4.1) contains only intercept terms and is therefore a ‘null’ model.

26

Initially we hoped to be able to use existing software for fitting latent trait models, but
found that existing tools were not up to the challenges posed by ecological data. Our
ltm.ecol function was based on the ltm function in the ltm package, but with modifi-
cations that make it more useful for ecologists. A simple one-axis model without quadratic
terms can be fitted with the following code.

> library(ltm)

> ltm(fish.t.ltm$Y ~ z1, IRT.param = FALSE)

Call:

ltm(formula = fish.t.ltm$Y ~ z1, IRT.param = FALSE)

Coefficients:

(Intercept) z1

PS 2.025 0.103

YP 2.207 -0.775

WS 1.372 0.192

CC 21.597 22.302

BB 0.862 0.698

NRD -0.328 1.716

GS 0.015 0.288

BT -1.000 1.415

SB -0.608 -0.032

BNM -1.121 0.756

CS -1.409 1.046

PD -1.534 1.304

FSD -20.555 29.882

LB -3.047 -2.723

BNS -1.538 0.059

B -1.651 1.123

FM -2.282 1.350

LT -3.060 1.898

BS -3.357 2.206

BD -2.707 1.029

ID -3.593 2.019

LC -14.004 9.442

RB -2.637 0.925

Log.Lik: -327.527

This function uses the formula-style input familiar to users of lm and glm. On the left of
the tilde is the observed data matrix and on the right is the symbol z1, which denotes a one
axis logistic model with linear terms only. The first thing to notice about this fit is the very
large coefficients for CC and FSD, which lead to predicted probabilities of occurrence that
are very close to zero and one. Such probabilities are too certain and cross-validate poorly
with ecological data. Furthermore, a one-axis linear model is not generally consistent with
ideas in gradient analysis. While ltm allows us to fit two-axis linear and quadratic models,
this over-fitting problem only becomes exacerbated as we see here.

27

> ltm(fish.t.ltm$Y ~ z1 + z2, IRT.param = FALSE)

Call:

ltm(formula = fish.t.ltm$Y ~ z1 + z2, IRT.param = FALSE)

Coefficients:

(Intercept) z1 z2

PS 8682958.400 2274726.519 973706.857

YP 4333745.333 4192892.684 2104987.935

WS 12541836.205 15810013.357 3284022.679

CC 38651088.864 -20881953.683 -15753423.771

BB 1224994.585 -5548414.960 -4792202.929

NRD 8844949.226 -11134854.525 -8497636.016

GS -21272797.461 3810315.960 5293802.369

BT 6866117.013 -13329864.504 -14616116.456

SB -36644199.677 40534811.352 16910734.170

BNM 4995780.061 10791516.738 773292.161

CS -0.668 0.541 -0.333

PD -1824211.670 -8109335.281 -3706103.460

FSD 8795431.680 -11006248.132 -15292969.401

LB -13089245.746 4779235.436 9743884.394

BNS -22506235.508 4250019.681 5550268.224

B -19483826.775 23046472.754 3240351.341

FM 4572532.928 -38547212.334 -32002249.113

LT -27819867.217 851468.404 7466117.507

BS -7221023.862 9036141.092 -282702.126

BD 4426526.281 -5547974.985 -8258049.815

ID -12156931.921 12077947.118 -4514760.381

LC -35177424.664 40475824.193 -6157804.426

RB -9506460.278 6285096.414 -8536089.647

Log.Lik: -2025.203

> ltm(fish.t.ltm$Y ~ z1 + I(z1^2) + z2 + I(z2^2), IRT.param = FALSE)

Call:

ltm(formula = fish.t.ltm$Y ~ z1 + I(z1^2) + z2 + I(z2^2), IRT.param = FALSE)

Coefficients:

(Intercept) z1 I(z1^2) z2 I(z2^2)

PS -9068149 -9029520.8 4959582.1 2492970.77 924923.85

YP 53877867 -2150473.5 -1275813.3 -6560274.37 -687292.23

WS 5557867 2231792.6 2384455.4 -1639673.01 -193040.14

CC 22938709 3436567.9 -6425602.3 630345.59 -442533.79

BB 1679719 1398845.8 -3385331.2 2469791.51 497718.04

NRD 21284052 4989236.1 -3499327.9 894305.03 -726165.41

GS 6328861 4572790.2 -6362202.4 579654.28 229141.27

BT 14192814 4406902.1 -4001912.3 -190162.06 -216300.03
28

SB 14097186 1223507.6 -534048.5 -1983588.72 -1208548.50

BNM -33672642 -6448910.0 3861156.5 2217220.89 1161168.77

CS -12109497 13526878.3 -5490538.8 804578.74 -89911.42

PD -8324334 3770029.7 -5805767.8 1093438.69 263927.96

FSD 7313967 -384990.8 -11843033.7 62403.27 -292539.70

LB -13683354 -1877526.5 5084193.7 -4163188.56 -391627.51

BNS -45736031 6383188.0 3131491.1 2939011.11 656753.95

B 7297288 1548474.3 -4700924.6 -2052272.92 -578098.70

FM -28755617 -11152921.6 -12499533.3 6179643.24 1657113.76

LT 7795098 -1752870.3 -8300991.6 -1721871.79 -147530.26

BS -1997597 -4049973.6 -3814033.1 351696.61 -157459.01

BD -7823435 -10068047.8 -9695955.4 5417409.84 -356441.34

ID -4382425 22990483.7 -12757052.2 -4206887.01 -1140263.67

LC 902573073 -1869336684.1 799689705.7 3398585.27 -452781.33

RB 9874183 3998984.2 -4151299.9 -2010797.88 -590414.27

Log.Lik: -2271.514

Notice that the goodness-of-fit as measured by log-likelihood (i.e. Log.Lik in the model
output) goes down as the models get more complex; this is a sign of a very bad model-
fitting procedure for these data. It was this poor performance of the ltm function that
led us to write ltm.ecol, which makes use of LASSO-based regularization. Our LASSO
procedure also ensures that species cannot take their minimum probability of occurrence
at intermediate values of the ordination space, which is often thought to be an ecologically
questionable assumption. Another consequence of these extremely large coefficients is that
AIC, which is calculated by ltm, is not appropriate because AIC requires that parameter
estimates are numerically on the interior of the parameter space—not the case for ltm with
the fish data. Our ltm uses CVIC, which is valid for virtually any fitting procedure.

To compare CVIC values for a number of λ values, add a cvic=TRUE argument to ltm.ecol.

> fish.t.ltm <- ltm.ecol(fish.t, cvic = TRUE, lambda = seq(0.1, 4.1,

+ 1), verbose = FALSE)

We set verbose=FALSE to suppress long reports that would take up many pages. But in
practice, we recommend using these reports as they provide valuable information for mon-
itoring the cross-validation procedure. Note that calculating CVIC in this way can take a
fairly long time for larger data sets, and therefore we recommend making sure that the λ
values used cover a wide range of model complexity before setting cvic=TRUE (see discussion
above and in Section 10.1). We can print this fitted model object as follows.

> fish.t.ltm

Regularization path:

lambda CVIC

1 0.1 3961.0

2 1.1 738.9

3 2.1 750.3

4 3.1 787.6

5 4.1 800.5

29

Optimal lambda: 1.1

Call:

ltm.ecol(Y = fish.t, cvic = TRUE, lambda = seq(0.1, 4.1, 1))

Coefficients:

(Intercept) axis I axis I^2 axis II axis II^2

PS 4.7 0.0 -0.3 0.2 -0.8

YP 4.1 -1.1 -0.5 0.7 -0.1

WS 2.1 -0.1 -0.3 0.7

CC 3.4 1.5 -0.7

BB 1.7 0.2 -0.3 0.3 -0.2

NRD -0.2 1.2 0.0

GS 1.3 -0.6 -0.3

BT -1.1 1.5

SB -0.8 -0.6 1.2

BNM -0.7 0.4 0.4 -0.3

CS -0.8 0.2 -0.1 0.8 -0.2

PD -1.3 1.3 -0.2

FSD -1.5 1.2 0.9

LB -2.1 -1.8 -0.2 -0.1

BNS -1.3 0.0 -0.1

B -1.3 -0.4 1.4

FM -2.2 1.4 -0.2

LT -2.8 0.1 1.4

BS -2.3 0.2 -0.1 1.0

BD -2.5 0.8 -0.1

ID -3.6 1.7

LC -3.0 0.7

RB -2.7 0.0 1.0

There is some more information in this printout compared with the version without the CVIC
calculations. This new information consists of a table of CVIC values for various values of λ,
and the optimal λ value. The coefficients that are printed are for the optimal model. We can
see this information in graphical form using a method we wrote for the screeplot function
(The dotted vertical line indicates the optimal model with approximately 3.4 coefficients per
species).

> screeplot(fish.t.ltm)
30

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0
50

0
10

00
15

00
20

00
25

00
30

00

Complexity (parameters per species)

C
V

IC

4.
1

3.
1

2.
1

1.
1

0.
1

Regularization parameter, λ

Notice the extremely poor performance of the λ = 0.1 model, which approaches the com-
plexity of the models fitted by the ltm function that we found to perform poorly above.

We can explore this optimal model using the biplot function.

> fish.v <- fish[valid, colnames(fish.t.ltm$Y)]

> biplot(fish.t.ltm, fish.v)
31

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Axis I

A
xi

s
II

We supply newdata to the biplot function. These new data are the validation lakes that
were not used to fit the model. They are plotted as squares whereas the circles represent the
training lakes. Notice the subscripting technique that makes use of the colnames function in
the first line, which ensures that only species that were used in the training data are retained
in the validation data; this is important because the model only makes predictions about
the species used to fit it. The red lines that represent the species are contours connecting
points in the ordination space where probability of occurrence is 1

2
. We see a wide range

of shapes, from ellipses to parabolas to lines, illustrating the diversity of responses that can
be modeled—allowing a diversity of species responses to be represented if such diversity is
present in the information provided by the training data. On the other hand, one obvious
problem with this graph is that the large number of species makes it difficult to read. Another
problem is that the directions of increasing probabilities of occurrence for some species are
not clear. The code below allows us to overcome some of these difficulties.

> spp <- c(9, 14)

> bp.arws <- biplot(fish.t.ltm, fish.v, spp = spp, arrows = "input")

This code generates a biplot of the bass species (spp nine and fourteen) only. We do not
show this plot because it is interactive (i.e. it requires user input using the mouse). By
setting the arrows="input" argument, the biplot method plots each species one at a time.

32

The user is given an opportunity to draw an arrow for each species indicating the direction
of increasing probability. Two clicks are required: the first for the tail of the arrow and
the second for the head. If the user wishes to not plot an arrow for that species, one clicks
above 3 on the y-axis. These arrow positions are stored in bp1.arws, which can be passed
to another call to the biplot method as follows.

> biplot(fish.t.ltm, fish.v, spp = spp, arrows = bp.arws)

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Axis I

A
xi

s
II

Here we drew an arrow indicating that SB decreases (increases) along axis one (two). This
information can be read off of the coefficient table for SB, which gives negative (positive)
linear term coefficients for axis one (two). LB does not require an arrow because its par-
abolic curvature is obvious—because our modified LASSO procedure constrains quadratic
coefficients to be negative, higher probabilities are always inside of curved contours. We
chose to make arrow drawing interactive and not automatic for two reasons: (1) sometimes
the curvature is not obvious and it is difficult to automate when arrows are required and (2)
human-guided arrow-placement can be important for readability.

We can use the boxplot method to graphically explore model predictions. Here is the code
to compare the observed presence / absence of species 7 (GS) against fitted probabilities of
occurrence in the training data.

33

> sp <- 7

> boxplot(fish.t.ltm, responses1 = sp, xlab = paste("Fitted probability

+ of occurrence of ",

+ colnames(fish.t)[sp], ", given all other species.", sep = ""),

+ ylab = "Observed presence / absence")

●●

0

1

0.0 0.2 0.4 0.6 0.8 1.0

Fitted probability of occurrence of GS, given all other species.

O
bs

er
ve

d
pr

es
en

ce
 /

ab
se

nc
e

The predictions for this species are much worse out of the training sample as we now show
by specifying newdata.

> boxplot(fish.t.ltm, fish.v, responses1 = sp, xlab = paste("Fitted

+ probability of occurrence of ",

+ colnames(fish.t)[sp], ", given all other species.", sep = ""),

+ ylab = "Observed presence / absence")
34

0

1

0.0 0.2 0.4 0.6 0.8 1.0

Fitted probability of occurrence of GS, given all other species.

O
bs

er
ve

d
pr

es
en

ce
 /

ab
se

nc
e

But see the main text of the paper for examples of good out-of-sample prediction.
The boxplot method is based on the predict method, which can be used to generate

any model-implied probability of occurrence or co-occurrence. We use the responses1,
responses0 and predictors arguments to specify different probabilities. The third of these
arguments specifies which species to condition on. These species play the role of predictors,
in that their patterns of co-occurrence determine the probabilities for the species playing
the role of response. These patterns of co-occurrence of the predictor species are passed to
predict either (1) through the data stored in the fitted model object that was used to fit
the model (i.e. training data) or (2) through the newdata argument if it is provided. If
predictors=NULL then no conditioning is done (analogous to an intercept only model in
regression). The responses1 and responses0 arguments are used to specify the response
species that are predicted to be present and absent respectively. For example, if we want
to obtain the probability that species one is absent and species two is present given the
patterns of occurrence of species three through ten in the validation lakes, we would input
the following.

> predict(fish.t.ltm, fish.v, responses0 = 1, responses1 = 2, predictors = 3:10)

Bentshoe Poker Blue Chalk Saucer Big East Raven

0.07128117 0.04208394 0.02231566 0.11823551 0.04208394 0.02354065
35

L.Orillia 3 Island McFadden Big Orillia Shoe Louie

0.10714363 0.09240949 0.01692038 0.10714363 0.20862564 0.02260226

Redchalk Sunken Troutspawn Wolf Tingey Poorhouse

0.01716019 0.06133988 0.01716019 0.03529885 0.21434699 0.01716019

The variation in these probabilities among the validation lakes is due to variation in the
presence / absence patterns of the predictor species. To see this, if we specify a vector of
length zero for predictors (i.e. no predictors) we get the following.

> predict(fish.t.ltm, fish.v, responses0 = 1, responses1 = 2,

+ predictors = numeric(0))

Bentshoe Poker Blue Chalk Saucer Big East Raven

0.04178084 0.04178084 0.04178084 0.04178084 0.04178084 0.04178084

L.Orillia 3 Island McFadden Big Orillia Shoe Louie

0.04178084 0.04178084 0.04178084 0.04178084 0.04178084 0.04178084

Redchalk Sunken Troutspawn Wolf Tingey Poorhouse

0.04178084 0.04178084 0.04178084 0.04178084 0.04178084 0.04178084

As expected, the variation has disappeared. In these cases, it is better to specify predic-

tors=NULL as follows.

> predict(fish.t.ltm, fish.v, responses0 = 1, responses1 = 2,

+ predictors = NULL)

[1] 0.04178084

The possibilities are numerous. Here is one final example.

> predict(fish.t.ltm, fish.v, responses0 = c(10, 17), responses1 = c(4,

+ 9), predictors = c(6, 21, 1, 19))

Bentshoe Poker Blue Chalk Saucer Big East Raven

0.17489647 0.13298580 0.13298580 0.17489647 0.13298580 0.31650548

L.Orillia 3 Island McFadden Big Orillia Shoe Louie

0.17489647 0.08142069 0.17489647 0.17489647 0.17489647 0.13298580

Redchalk Sunken Troutspawn Wolf Tingey Poorhouse

0.13298580 0.10349341 0.20649377 0.17489647 0.17489647 0.20649377

> bp.arws1 <- biplot(fish.t.ltm, fish.v, spp = c(4, 5, 6, 8, 9, 13),

+ arrows = "input")

> bp.arws3 <- biplot(fish.t.ltm, fish.v, spp = c(3, 16, 18, 21, 23),

+ arrows = "input")

> par(mfrow = c(3, 2), mar = c(4, 4, 2, 2))

> plot(rnorm(30, sd = 1.3), rnorm(30, sd = 1.3), col = grey(0.5),

+ pch = 1, xlim = c(-3, 3), ylim = c(-3, 3), xlab = "Axis I",

+ ylab = "Axis II", asp = 1, las = 1, cex.lab = 1.2, cex.axis = 1.2)

> title(main = "(A)", adj = 0)

> abline(v = 0, lwd = 0.01)

> abline(h = 0, lwd = 0.01)

> x <- seq(-3, 3, 6/(75 - 1))

> X1 <- cbind(1, x, x^2) %x% rep(1, 75)

> X2 <- matrix(x, 75^2, 1)
36

> X1 <- cbind(X1, X2)

> X2 <- X2^2

> X <- t(cbind(X1, X2))

> B <- matrix(c(1.2, 0.6, 0, 0.5, 0, 1, -5, -5, 7, -3, -1.2, 1.6,

+ 0, -0.1, -1, -5.5, 10, -4, 0, 0), 4, 5, byrow = TRUE)

> eta <- B %*% X

> for (j in 1:4) {

+ contour(x, x, t(matrix(eta[j,], 75, 75)), nlevels = 1, zlim = c(0,

+ 0), add = TRUE, labels = paste("sp", j), col = "red", lwd = 0.5,

+ lty = 1, method = "edge", labcex = 0.8)

+ }

> arrows(-0.8286392, -1.420022, -0.6064043, -1.21086, length = 0.05,

+ col = "red", lwd = 0.5)

> arrows(0.83, -1.845596, 1.13, -1.845596, length = 0.05, col = "red",

+ lwd = 0.5)

> arrows(1.6689526, -1.845596, 1.368953, -1.845596, length = 0.05,

+ col = "red", lwd = 0.5)

> par(mar = c(5, 4, 4, 1))

> screeplot(fish.t.ltm, las = 1, lwd = 2, cex.lab = 1.2, cex.axis = 1.2,

+ lambda.cex = 0.8, reg.cex = 0.7, yaxt = "n", xaxt = "n")

> axis(1, at = 1:4, labels = 1:4)

> axis(2, at = c(0, 1000, 2000, 3000), labels = c(0, 1000, 2000,

+ 3000), las = 1)

> title(main = "(B)", adj = 0, line = 2.5)

> par(new = TRUE, mar = c(9, 7, 5, 7))

> screeplot(fish.t.ltm, print.reg = FALSE, las = 1, ylim = c(0, 70),

+ yaxt = "n", xaxt = "n", xlab = "", ylab = "")

> axis(2, at = c(0, 20, 40, 60), labels = c(0, 20, 40, 60), las = 1)

> axis(1, at = 1:4, labels = 1:4)

> par(mar = c(4, 4, 2, 2))

> biplot(fish.t.ltm, fish.v, spp = c(4, 5, 6, 8, 9, 13), arrows = bp.arws1)

> biplot(fish.t.ltm, fish.v, spp = c(7, 10, 12, 14, 17))

> biplot(fish.t.ltm, fish.v, spp = c(3, 16, 18, 21, 23), arrows = bp.arws3)

> biplot(fish.t.ltm, fish.v, spp = c(1, 2, 19))

37

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Axis I

A
xi

s
II

(A)

 sp 1

 sp 2

 sp 3

 sp 4

 sp 4

Complexity (parameters per species)

C
V

IC

4.
1

3.
1

2.
1

1.
1

0.
1

Regularization parameter, λ

1 2 3 4

0

1000

2000

3000

(B)

0

20

40

60

1 2 3 4

●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●

● ●

●

●

●● ●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Axis I

A
xi

s
II

(C)

●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●

● ●

●

●

●● ●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Axis I

A
xi

s
II

(D)

●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●

● ●

●

●

●● ●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Axis I

A
xi

s
II

(E)

●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●

● ●

●

●

●● ●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Axis I

A
xi

s
II

(F)

38

