
APPENDIX A: MATHEMATICAL DETAILS OF RANDOM-EFFECTS
ORDINATION

STEVEN C. WALKER AND DONALD A. JACKSON

Abstract. In this appendix, we provide the mathematical details of random effects ordi-
nation that were not explicitly described in the main text. We begin with a quick review of
statistical modeling and information criteria. We then give a general treatment of random-
effects ordination. Three other sections include details on the three specific approaches to
random-effects ordination that are considered in the main text: factor analysis; PCA; la-
tent trait models. We conclude with a small argument on why the CVIC (cross-validation
information criterion) will have practically no bias.
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I. Probabilistic statistical modeling background

Probabilistic statistical models of ecological study systems are extensively developed else-
where (Hilborn and Mangel 1997; Burnham and Anderson 2002; Clark 2007; Bolker 2008),
and so we will only briefly highlight the important concepts here. Statistical models assign
a probability (or probability density for continuous data) to each possible data set, Y, that
could be observed from a study system. Relatively high probabilities indicate that Y is not
a surprising observation, according to the model. These probabilities, P (Y|θ) depend on a
vector of parameters, θ; examples of parameters include means, intercepts, slopes, residual
variances, carrying capacities, stage-specific mortalities, etc. Because we often lack theo-
retical considerations that would lead us to a choice for θ, we often use data to estimate
it; such estimates, θ̂, will be denoted with a hat. A common estimation procedure (called

maximum likelihood) is to choose θ̂ such that P (Y|θ) is maximized at θ = θ̂, where Y is a
data set that was actually observed. This statistical modeling framework provides a natural
and general concept of goodness-of-fit: fitted models that assign high probability (density)
to the observed data provide a better fit. It is more common to work on the log-scale because
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of mathematical conveniences (Bolker 2008) and so,

GOF = log(P (Y|θ̂)) (A.1)

is used as a general goodness-of-fit measure. Maximum likelihood estimation chooses param-
eters that maximize this GOF criterion.

Probabilistic prediction. It is one thing for a model to have high GOF, it is quite another
for it to predict new data; prediction success is a stronger assessment of a model because
fitting is easier than prediction. More parameters makes it easier for maximum likelihood
to tailor the model to the observed data. Such over-fitting results in models that lack
generality and therefore poorly predict new data from the modeled study system. Therefore,
it is important to choose an appropriate level of complexity for our statistical models and
we will show how to use information criteria to help make this choice in ordination analysis.
One of the benefits of random-effects ordination is that it explicitly generates quantitative
predictions about observational units not yet sampled. We first consider statistical prediction
more generally before applying it to random-effects ordination.

It is easy to make a näıve prediction from a regression line. For a given value, x, of the
independent variable, take the value, a+bx, as the prediction. Such a prediction is essentially
certain to be wrong in the sense that the prediction will differ from the true value by some
non-zero amount; in other words, there will be error in the prediction. However, there are
ways to make predictions that take this inevitable error into account. For example, one
type of probabilistic prediction involves the prediction intervals, ellipses, and regions that we
considered in the main text (Fig. 1). A similar example with multivariate presence-absence
data involves predicting the probability of co-occurrence of two or more species, as opposed
to deterministically asserting co-occurrence or not.

Information criteria are based on another type of prediction, which generalizes the likelihood-
based goodness-of-fit measure (Eq. A.1). Here we measure the success with which a model
fitted to one data set, YA, probabilistically predicts a new data set, YB, by the log-probability
density that the fitted model associates with YB,

log(P (YB|θ̂A)) (A.2)

where θ̂A is the vector of parameter estimates based solely on the first data set, YA. Eq. A.2
assesses fitted models, θ̂A, by how likely they are to generate data that matches new data,
YB, from the same study system. The difference between this measure and the goodness-
of-fit measure is that the data that were used to fit the model, YA, are different from the
data being predicted, YB. Complex models are influenced by the idiosyncrasies of the data
that happened to be sampled, making them poor at predicting new data. For this reason,
the goodness-of-fit advantage enjoyed by complex models is of limited interest; over-fitted,
complex models do not teach us much about our study system.

Expected Kullback-Leibler information. Prediction provides a tool for identifying when
a model is too complex. This tool encourages us to prefer models that make better predictions
of new data. The standard assessment of probabilistic predictions has become a quantity
called the expected Kullback-Leibler information (Burnham and Anderson 2002), which is
based on the measure of prediction success in Eq. A.2.

Expected Kullback-Leibler information is a theoretical quantity that considers a study
design in which two data sets, YA and YB, of equal sample size, n, are independently taken
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from the same system. Then, ignoring an additive constant that depends on the study
system, the expected Kullback-Leibler information is negative one times the average of the
prediction success measure (Eq. A.2),

EKL = −E(log(P (YB|θ̂A))) (A.3)

where E is the expectation (or average) with respect to repeated sampling of pairs of data
sets from the study system.

Because of the negative sign in Eq. A.3, expected Kullback-Leibler information mea-
sures the expected error with which a model fitted to a data set of n observations predicts
another data set of the same size. The fundamental principle underlying much of informa-
tion theoretic model selection is that we should select models with low values of expected
Kullback-Leibler information. Burnham and Anderson (2002) provided extensive arguments
on why this fundamental principle is appropriate for statistical ecology.

There is a practical problem however; we usually only have a single data set. Yet calcu-
lating Eq. A.3 requires all possible data sets from the study system. This is not possible,
especially since ecological study systems are not stationary and change over time and space.
To solve this problem, information criteria are used to estimate expected Kullback-Leibler
information from a single sample.

II. Information criteria

Akaike (1973) developed the first information criterion, AIC, which is used to estimate the
expected Kullback-Leibler information of a maximum likelihood model fitting procedure,

AIC = −2 log (P (Y|θ̂)) + 2P (A.4)

where P is the number of free parameters fitted by maximum likelihood. The first term is
negative two times the goodness-of-fit measure (Eq. A.1) and therefore measures lack-of-fit.
The second term penalizes models in proportion to their complexity. If sample sizes are
sufficiently large, 1

2
AIC is, up to an additive constant, an unbiased estimate of expected

Kullback-Leibler information.
Cross-validation (Stone 1974) can be used to develop another information criterion. With

the form of cross-validation used here, a parameter estimate, θ̂(i), is made using all of the
data except the ith observation, yi. Then the success of this fitted model at predicting the
held-out observation is measured as log(P (yi|θ̂(i))), which is a special case of Eq. A.2. The
important thing about this measure is that the data being predicted are not used in the
fitting of the model that is being assessed. Subsequently, all of the other n− 1 observations
are left out, leading to the cross-validated measure of prediction success,

CV =
n∑
i=1

log(P (yi|θ̂(i))) (A.5)

This equation is much like the goodness-of-fit measure (Eq. A.1) but without the circularity
of predicting the same data that were used to fit the predictive model. The quantity −CV is
also (up to an additive constant) an asymptotically unbiased estimate of expected Kullback-
Leibler information (Yanagihara et al. 2006). Hence we define a cross-validation information
criterion (CVIC) as,

CVIC = −2CV (A.6)
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Both AIC and CVIC are estimates of expected Kullback-Leibler information. Which crite-
rion should be used? AIC is less variable (Efron 2004) and easier to calculate because it does
not require repeated estimation. However, AIC can only be applied in certain circumstances
whereas CVIC is much more general. For example, AIC can only be used with maximum
likelihood estimation, whereas CVIC in principle may be applied to any estimation method.
As we will see later, it is sometimes useful to consider methods of estimation other than
maximum likelihood that lead to better predictive success and are therefore less prone to
over-fitting. Hence we use both AIC and CVIC.

Despite this complementarity of AIC and CVIC, it is not appropriate to mix the two
criteria in a single model-selection analysis. For example, it is not appropriate to calculate the
AIC for one model and then the CVIC for another and then select the model with the smaller
criterion. Because these two consistent estimates of expected Kullback-Leibler information
have different properties, mixing them introduces the possibility that some models will gain
an advantage over the others purely as a result of which criteria were used with which models.
Hence if some models can only be assessed with CVIC—if they are not fitted by maximum
likelihood for example—then all models must also be assessed with CVIC, despite the fact
that AIC is less computationally demanding and less variable.

Although all of these measures for assessing probabilistic predictions and goodness-of-fit
might seem overwhelming, it is important to remember that they are all just variations on the
theme of log(P (Y|θ̂))—the log-probability density of observed data under a fitted probability
model. The concept of a probabilistic statistical model provides clear, general and defensible
guidelines for assessing statistical analyses. This probabilistic approach encourages us to
select models associated with low information criteria, because such models are expected
to provide better probabilistic predictions of new data and hence are good candidates for
working models of a particular study system.

III. General random-effects ordination model

Random-effects ordination models are specified in two steps. First we model the probabil-
ity distribution, P (xi), of the unobserved latent variables (i.e. the axes) for an observational
unit, i. To keep our presentation simple, we assume that this distribution is fully specified
and does not require any parameters although this restriction may be lifted. Second we
model the probability distribution, P (yij|xi,θj), of the observed data, yij, for the jth vari-
able at the ith observational unit, given the axes, xi, and the parameters, θj, determining
the relationship between the jth variable and the axes.

The first major assumption of our general model is that the mean, ŷij, of the distribution,
P (yij|xi,θj), is given by,

g(ŷij) = a(θj) +
∑
k

fk(xi,θj) (A.7)

where g is a monotonically increasing ‘link’ function (e.g. identity link in factor analysis and
the logit link in the latent trait model we present) and a and the fk are functions. The first
term, a(θj), measures the overall central tendency of variable j. The terms in the summation
are random effects. As discussed in the main text (lines): they are random because they
depend on random ordination axes and they are effects because they measure deviations
from an overall central tendency.
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The second major assumption is that the variables are conditionally independent, given
the value of the latent axes, xi; that is, for a given position, xi, in the ordination space, O,
the variables are independent. Therefore, we can write the conditional probability of all of
the observed variables, yi, at the ith observational unit, as,

P (yi|xi,θ) =
∏
j

P (yij|xi,θj) (A.8)

Given this conditional independence, how then can the model be used to explore associations
between the variables? The key is to examine the model without explicit reference to the
latent axes, which can be done by averaging over the conditional distributions associated
with different positions in O,

P (yi|θ) =

∫
O
P (yi|xi,θ)P (xi)dxi (A.9)

This is the marginal distribution of the observed variables, and is central to random-effects
modeling. Unlike the conditional distribution, this marginal distribution does not assume
independence of the observed variables. Marginal dependencies arise out of conditional
independence in the same way that we may observe a correlation between two variables that
arises purely because they are both related to an unmeasured third variable (see Fig.1 in the
main text for an example).

The probability of an entire data set, Y, is,

P (Y|θ) =
∏
i

P (yi|θ) (A.10)

Therefore, the log-likelihood is,

L(θ) =
∑
i

log(P (yi|θ)) (A.11)

Estimates, θ̂, of the parameters, θ, can be obtained by maximizing this equation.
Once θ̂ is obtained we can estimate the axis scores, conditionally on the observed data for

each observational unit. By Bayes’ theorem,

P (xi|yi, θ̂) =
P (yi|xi, θ̂)P (xi)

P (yi|θ̂)
=

P (yi|xi, θ̂)P (xi)∫
P (yi|xi, θ̂)P (xi)dxi

(A.12)

A natural estimate of xi is the mean of this distribution,

x̂i =

∫
O

xiP (xi|yi, θ̂)dxi (A.13)

This is the estimate that we employ here for both factor analysis and latent trait models in
the main text. Although this method does use Bayes’ theorem, those who have philosophical
objections to Bayesian methods may accept this approach in good conscience. Most non-
Bayesian statisticians do not object to such methods, largely because some non-Bayesian
estimation method is first used to estimate the model parameters. There is a big philosoph-
ical difference between inferring latent variables and parameters with Bayes’ theorem. For
example, Bradley Efron, inventor of the bootstrap and vocal advocate for non-Bayesian sta-
tistics, had this to say while defending empirical Bayes methods: “Bayes’ rule is satisfying,
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convincing, and fun to use. But using Bayes’ rule does not make one a Bayesian; always
using it does, and that’s where difficulties begin” (Efron 2003).

We also use the parameter estimates to make predictions. All of our predictions in this
manuscript are based on the estimated marginal distribution, P (yi|θ̂). The distribution of

one set of variables, y1, given another set, y2, is the marginal, P (y|θ̂) (note that we have
dropped the subscript i for simplicity of presentation), divided by the marginal distribution
for the conditioning (i.e. predictor) variables,

P (y1|y2, θ̂) =
P (y|θ̂)

P (y2|θ̂)
=

∫
P (y1|x, θ̂)P (y2|x, θ̂)P (x)dx∫

P (y2|x, θ̂)P (x)dx
(A.14)

The mean of this distribution provides a regression equation when the variables are contin-
uous, or conditional probabilities of occurrence when the variables are binary.

IV. Random-effects ordination with factor analysis

Factor rotations. In the main text we noted the fact that 1
2
d(d − 1) of the coefficients

in B are not free parameters. The reason for this is that we can multiply the coefficient
matrix by any orthogonal d-by-d matrix, Q, and obtain a model with exactly the same
likelihood (Johnson and Wichern 1992). To see this, note that from Eq. 4 in the main text

the covariance matrix, C̃, for this transformed model is,

C̃ = BQQ′B′ + Ψ (A.15)

C̃ = BIB′ + Ψ (A.16)

C̃ = BB′ + Ψ = C (A.17)

which is the same as the untransformed covariance matrix, C, because QQ′ equals the
identity matrix, I, as a result of the orthogonality of Q. Therefore, maximum likelihood
does not define a unique estimate of B but it does define a unique estimate of C. The
matrix Q is often called a rotation matrix. However, there is a non-geometric interpretation
of Q. Because we can choose any B̂Q as a maximum likelihood estimate, where B̂ is one ML
estimate and Q is an arbitrary d-by-d orthogonal matrix, we may as well choose Q such that
B̂Q is easy to interpret. There are a number of rotations that are used in the factor analysis
literature. We use the varimax procedure (the default in factanal) for choosing Q, because
it tends to make the elements in the coefficient matrix either close to zero or large. Such a
choice makes interpretation easier because we can unambiguously identify what correlations
are being summarized by each axis. Although other procedures for choosing Q are available,
a comparison of them is outside of our scope.

Full and null models. In the main text we compared factor analysis ordinations with a
full and a null model. These models also follow a multivariate normal distribution with mean
µ and covariance matrix C, but now C is no longer dependent on latent variables. However,
the log-likelihood function,

L(µ,C) = −n
2

[p log(2π) + log |C|+ tr(C′S)] (A.18)

still resembles the log-likelihood function for the factor analysis models. For the full model,
C may be any valid covariance matrix—in technical terms C must be positive definite. For
the null model, C is constrained to be diagonal—no non-zero correlations between variables.
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For the full model, the maximum likelihood estimates of µ and C are µ̂ = ȳ and Ĉ = Ŝ.
The full model therefore has the intuitively appealing property that the maximum likelihood
estimate of the mean and covariance matrix is simply the sample mean and sample covari-
ance matrix. This result implies that latent variable models fit the data better when their
estimates of µ and C are more similar to the maximum likelihood estimates under the full
model.

For the null model, the maximum likelihood estimates of µ and C are the same as for the
full model with the exception that all covariances (i.e. off-diagonal elements) in the sample
covariance matrix are changed to zero; because the null model assumes that the dependent
variables are uncorrelated, it does not use any sample information about correlations or
covariances.

Regression with factor analysis. More insight into Eq. 13 in the main text can be
obtained by rewriting it as,

ŷ1 = â1 + B̂1x̂2 (A.19)

where x̂2 = B̂′2Ĉ
−1
2 (y2 − â2) is an estimate of the ordination axes using only the variables

playing the role of predictors (compare with Eq. 12). Therefore, Eqs. 13 and A.19 can be
seen as multiple multivariate linear regression equations. But these equations differ radically
from standard regression, because the predictors are estimated axis scores, not correlated
observed variables. If y2 were used as the predictors, as in least-squares regression, the
resulting regression slopes will often be highly unstable due to multicollinearity. But the
regression slopes in Eq. A.19 are stable because x̂2 is estimated under the assumption that
its components are un-correlated, thereby accounting for collinearity (Lawley and Maxwell
1973).

V. Random-effects ordination with PCA

From Eqs. 4 and 17 in the main text, the PPCAcor estimate of the correlation matrix is,

UdVU′d + ψ̂I (A.20)

where,

V ≡ Λd − ψ̂I (A.21)

and Λd is a d-by-d diagonal matrix with the first d eigenvalues of the sample correlation
matrix on the diagonal, ψ̂ is the average of the p − d smallest eigenvalues of the sample
correlation matrix and Ud is a matrix with d columns given by the first d eigenvectors. The
goal of this section is to assess how similar this PPCAcor estimate is to a true correlation
matrix with block structure.

In the infinite sample limit, the sample correlation matrix is identical to the population
correlation matrix. For our purposes here, the population correlation matrix has the block
structure described in Section 9.3. This block structure allows us to say much more about
the eigen-structure of the correlation matrix on which the PPCAcor estimates depend.

We are interested in PPCAcor for d = g axes, because in the infinite sample limit each of
the g groups should require only a single axis to summarize its covariance. By a result of
(Rousson and Gasser 2004) (p. 545), the block structure of the correlation matrix ensures
that the rows of Ug have at most a single non-zero element—each variable (row) is related
to a single axis (column). Variables in the same group have their non-zero element in the
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same column because they are associated with the same axis. But the Peres-Neto matrices
have a special kind of block structure; correlations between pairs of variables in the same
group are the same for all pairs in the group. For such matrices, by a result of (Johnson and
Wichern 1992) (pp. 365-367), the non-zero elements in the mth column of Ug are all equal
to,

um =
1
√
pm

(A.22)

where pm is the number of variables in the group. By the same result, the eigenvalue
associated with the mth eigenvector is 1+(pm−1)rm, where rm is the within-group correlation
for group m. Finally, combining the results of both Rousson and Gasser (2004) and Johnson
and Wichern (1992) it follows that there are pm − 1 residual eigenvalues equal to 1− rm for
each group, m.

Given the above results about the eigen-structure of block matrices, we can deduce that
ψ̂ is,

ψ̂ =
1

p− g

g∑
m=1

(pm − 1)(1− rm). (A.23)

We can also deduce that the diagonal elements of V consist of pm repetitions of the same
value, vm, for each group and that,

vm = 1 + (pm − 1)rm −
1

p− g

g∑
m′=1

(pm′ − 1)(1− rm′)

vm = 1 + (pm − 1)rm −
1

p− g

g∑
m′=1

(pm′ − 1) +
1

p− g

g∑
m′=1

(pm′ − 1)rm′

vm = 1 + (pm − 1)rm − 1 + r̄

vm = (pm − 1)rm + r̄

(A.24)

where, as in the main text,

r̄ =
1

p− g

g∑
m=1

(pm − 1)rm. (A.25)

Furthermore, the off-diagonal elements of V are all zero.
The PPCAcor estimated correlation, σ̂m, between two different variables of the same group,

m, is the element in the matrix in Eq. A.20 that corresponds to the correlation between
those two variables. By the rules of matrix algebra, this estimated correlation is,

σ̂m = u2
mvm. (A.26)

Substituting Eqs. A.22 and A.24 into this equation yields,

σ̂m =

(
1− 1

pm

)
rm +

(
1

pm

)
r̄ (A.27)

which is the required result (Eq. 18 in the main text).
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For the correlation matrix PCA estimate presented by Johnson and Wichern (1992), the
estimated correlation between variables i and j (both in group m) is given by,

σ̂m =

g∑
m′=1

λm′uim′ujm′ (A.28)

where λk is the kth eigenvalue and ujk is the element of the eigenvector matrix associated with
variable j and axis k. Then by the results of Rousson and Gasser (2004) and Johnson and
Wichern (1992) reviewed above, only one of the terms in this sum is non-zero, corresponding
to m′ = m—this is because each variable is associated with a single axis only. Therefore,

σ̂m = λmuimujm

σ̂m = (1 + (pm − 1)rm)uimujm

σ̂m = (1 + (pm − 1)rm)u2
m

σ̂m = (1 + (pm − 1)rm)
1

pm

σ̂m =

(
1− 1

pm

)
rm +

(
1

pm

)
(A.29)

which is the required result (Eq. 21 in the main text).

VI. Random-effects ordination with latent trait models

This material describes the principles behind our R function, ltm.ecol (Supplement 2
and Appendix B). Our approach is based on a combination of the ideas in the following
methodological papers: (Bock and Aitkin 1981; Woodruff and Hanson 1996; Rizopoulos
2006; Houseman et al. 2007; Friedman et al. 2010).

Approximating the ordination space discretely. Our approach begins with a dis-
cretization, O2

g , of the two-dimensional ordination space, which is a g-by-g regular lattice
that is bounded between -3 and 3 along both axes (Fig. A1). The shading of each lattice
point is proportional to the probability that a randomly sampled observational unit will be
characterized by the corresponding point in O2

g . This ordination space is built by taking the
Cartesian product,

O2
g = Og ×Og (A.30)

of one-dimensional ordination spaces, Og = {−3,−3 + 6
g−1

,−3 + 12
g−1

, ..., 3}, where Og can
be thought of as a single axis. Higher dimensional spaces can be produced by taking higher
order Cartesian products of Og. This discretization idea for latent trait model fitting is
clearly described by Woodruff and Hanson (1996).

Define the value of the ith site in O2
g as the ordered pair (xi1, xi2) such that xi1 and xi2

are both in Og. The probability associated with each point, (x1, x2), in O2
g is,

qg(x1, x2) =
exp(−x2

1+x2
2

2
)∑

(x1,x2)∈O2
g

exp(−x2
1+x2

2

2
)

(A.31)

As g → ∞, the lattice, O2
g , fills the space [−3, 3] × [−3, 3] and qg(x1, x2) goes to zero.

Therefore, as with all continuous distributions, the probability of any single point in the
space is zero in the limit of g → ∞. However, the probabilities of sets of lattice points in
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Figure A1. Ordination space approximation by a regular lattice.

particular regions will be non-zero as g → ∞, if the regions stay fixed as g increases and
have non-zero volume; in fact these probabilities will be equal to the probabilities given by
a bivariate normal density, N2(0, I), which is truncated outside of [−3, 3]× [−3, 3]. Because
most of the probability mass ofN2(0, I) is on [−3, 3]×[−3, 3], qg(x1, x2) approximatesN2(0, I)
and the approximations get better as g increases. Therefore, O2

g approximates the ordination
space of the latent trait model given in the main text.

The major benefit of this approximation is that we can use the EM-algorithm for finite
mixtures (Woodruff and Hanson 1996), which lets us avoid direct evaluation of extremely
difficult integrals. In fact, our discretization can be considered the first step to a simple
numerical integration scheme. There is a trade-off here, choosing g too large will make
computation times prohibitively long but choosing g too small will make the approximation
worse. In this paper, we used g = 10 which should be adequate for most ecological purposes.
Interestingly, smaller g’s makes the analysis more like a clustering approach whereas larger
g’s makes it more like ordination, because the space, O2

g , becomes ‘more continuous’.
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To put this lattice to work, we convert it into a matrix. Let x = [xk] be the vector with
the values in {−3,−3 + 6

g−1
,−3 + 12

g−1
, ..., 3}. Define the g2-by-5 matrix,

X =



1 x1 x2
1 x1 x2

1

1 x1 x2
1 x2 x2

2
...

...
...

...
...

1 x1 x2
1 xg x2

g

1 x2 x2
2 x1 x2

1

1 x2 x2
2 x2 x2

2
...

...
...

...
...

1 x2 x2
2 xg x2

g
...

...
...

...
...

1 xg x2
g x1 x2

1

1 xg x2
g x2 x2

2
...

...
...

...
...

1 xg x2
g xg x2

g



(A.32)

The first column contains only 1’s, and corresponds to the intercept. The second (fourth) and
third (fifth) columns represent the first (second) axis and its square. Notice that there is one
row in X for each point in the lattice, O2

g . Let q be a g2-by-1 column vector with elements

corresponding to the probabilities—given by the distribution, qg, over O2
g—associated with

each row in X (i.e. each point in O2
g).

Likelihoods and probabilties. Now that our ordination space and its probability distri-
bution has been defined, we can compute all of the probabilities and expectations predicted
from our model. In all of these expressions, the coefficients, bjk, are analogous to elements
of θ in the general model (nb. in the main text we use b’s and c’s to distinguish linear and
quadratic coefficients, but not here in the appendix). We begin with the conditional proba-
bility of observing species j at observational unit i given that the site is at the lth point in
the lattice,

log(pij|l) =
∑
k

(yijbjkxlk − log(1 + exp(bjkxlk))) (A.33)

The left hand side of this equation is analogous to log(P (yij|xi,θj)) in the general model.
The conditional probability of all variables (analogous to P (yi|xi,θ); Eq.A.8), is given by,

log(pi|l) =
∑
j

log(pij|l) (A.34)

The marginal distribution (i.e. P (yi|θ)) is,

pi =
∑
l

pi|lql (A.35)

where ql is the probability of being at lattice point l. Here is the first sign of a benefit of our
lattice approximation. To see this, note that Eq.A.35 is a special case of Eq.A.9, where the
integral has been replaced by a sum over the g2 points in O2

g—so instead of computing an
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extremely difficult integral we simply need to compute this sum. Using Bayes’ theorem, we
can also derive the conditional probability of being at lattice point l given the data at site i,

ql|i =
pi|lql
pi

(A.36)

This equation is used in the EM-algorithm for maximizing the log-likelihood function that
we now describe.

We can now write down the log-likelihood for the entire observed data set, which is simply,

L(B) =
∑
i

log(pi) (A.37)

This is the likelihood equation that the ltm function attempts to maximizes. However, we
found that maximizing this likelihood does not work very well for ecological data, because it
leads to unrealistically certain estimated probabilities of occurrence. Therefore, we seek to
maximize,

Λ(B) = L(B)− λ
∑
j

5∑
k=2

|bjk| (A.38)

such that bj3 and bj5 are not positive for all species, which ensures hump- rather than S-
shaped responses. The second term is a penalty for coefficients with large absolute values.
This penalty becomes more severe as the regularization parameter, λ, is increased. Notice
that we do not put a penalty on the intercepts, because there is a great deal of information
about the part of the data modeled by the intercepts (i.e. the overall level of occurrence of
each species). It is this equation that we seek to maximize using the EM-algorithm.

E-step. The EM-algorithm comes in two steps. The first step (called the E-step) is to
calculate the so-called ‘pseudo-data’,

νl =
∑
i

ql|i

rjl =
∑
i

yijql|i
(A.39)

The first quantity, νl, is interpreted as an estimate of the number of sites in the sample that
is located on the lth point in the lattice. The second quantity, rjl, is interpreted as an estimte
of the number of sites at lattice point l having species j present.

Non-regularized M-step. We first give an M-step for maximizing L(B) (Eq.A.37), before
maximizing the regularized form (Eq.A.38). This M-step is not very efficient for maximiz-
ing L(B), but a simple modification yields a good algorithm for maximizing Λ(B). This
non-regularized M-step is based on the iteratively reweighted least-squares algorithm for
computing logistic regression. Each M-step consists of one weighted least-squares problem
for each coefficient, bjk. The response variable of the least-squares problem for coefficient
bjk is (rjl, νl) for l = 1, ..., g2 and the predictor variable is the kth column, x(k) of X. There
is also an offset term given by

∑
k′ 6=k bjk′xlk′ . The goal is to estimate bjk, which is the only

coefficient for species j that is excluded from the offset term—the other coefficients are held
constant.
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The probability of occurrence of species j at lattice point l is,

pj|l =
1

1 + exp(−
∑

k′ bjk′xlk′)
(A.40)

The bjk coefficients in this equation are obtained from the previous iteration. The weights
for each lattice point are,

wjl = νlpj|l(1− pj|l) (A.41)

The iteratively reweighted least-squares algorithm makes use of the linearized logit transform,

ζjl = bjkxlk +
rjl − νlpj|l

wjl
(A.42)

Let ζj = [ζjl] be the vector containing the linearized transforms for species j. Then we may
write the weighted least squares solution as,

bjk = (XTWjX)−1XTWjζj (A.43)

where Wj is a diagonal matrix with the weights for species j on the diagonal. We use this
weighted-least squares estimator in the regularized M-step below.

Regularized M-step. This non-regularized M-step can be modified into a regularized M-
step by passing each weighted least-squares solution through a soft-thresholding operator
(Friedman et al. 2010). For the constant terms (k = 1),

bjk → bjk (A.44)

for the linear terms (k = 2, 4),

bjk →

 bjk − λ′ bjk > 0, |bjk| > λ′

bjk + λ′ bjk < 0, |bjk| > λ′

0 |bjk| < λ′
(A.45)

for the quadratic terms (k = 3, 5),

bjk →
{
bjk + λ′ bjk < 0
0 otherwise

(A.46)

where,

λ′ =
λ∑

l wjlx
2
kl

(A.47)

Full EM-algorithm. Algorithm 1 summarizes the main steps of our recommended ap-
proach to fitting presence-absence community data to latent trait models.

We choose an initial value for B using the first two axes of correspondence analysis. Let X̃
be an n-by-5 matrix with column one containing only ones, columns two and four containing
the first and second correspondence analysis axes (centered to mean zero and scaled to

variance one), and columns three and five containing their squares. Let Ỹ be the matrix
that results from transforming each element, yij, of Y, by 2yij − 1. Then calculate the least-

squares estimate, B̃, of the linear model with X̃ and Ỹ as predictor and response matrices.
We then take as our initial estimate of B,

B0 = log(
m̃

n− m̃
)B̃ (A.48)
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Algorithm 1 Summary of the EM-algorithm for the ecological latent trait model

(0) Choose an initial value for B.
(1) E-step:

(a) Calculate each log(pij|l) (Eq.A.33) for all i, j, l.
(b) Sum over the species to obtain log(pi|l) for each i, l (Eq.A.34).
(c) Calculate the marginal probabilities, pi, for each site, i (Eq.A.35).
(d) Use Bayes’ theorem to convert these pi|l and pi values into the ql|i for each i, l

(Eq.A.36).
(e) Use the ql|i to calculate the pseudo-data, νl and rjl (Eq.A.39).

(2) M-step:
(a) Loop over each type, k = 1, ..., 5, of coefficient.

(i) Loop over each species, j = 1, ...,m.
(A) Calculate pj|l (Eq.A.40) for each l using the current estimates of the

coefficients in B.
(B) Calculate the weights, wjl (Eq.A.41), for each l using these pj|l and

the pseudodata from the E-step.
(C) Calculate linearized logit transform, ζjl, for each l (Eq.A.42).
(D) Update bjk using Eq.A.43.
(E) Pass this bjk through the appropriate soft-thresholding operator

(Eqs.A.44,A.45,A.46,A.47).
(3) Repeat 1-2 until convergence.

where,

m̃ = min{max
j

(nj), n− 1} (A.49)

and nj is the number of observational units at which species j is present and n is the total
number of observational units. We chose this method of selecting initial values because it
has been convenient in practice. Some interesting work could be done in identifying better
initial values. Our ltm.ecol function allows users to specify whatever initial values they
would like.

We terminate the algorithm when the observed data log-likelihood—rounded to δ decimal
places—does not change from one iteration to the next. When δ is smaller, convergence is
judged more rapidly resulting in reduced accuracy but larger δ results in long computation
times. We found that δ = 1 produced satisfactory results with several data sets, in the sense
that our qualitative interpretations were left unchanged by increasing δ.

In practice, we do not know what value of the regularization parameter, λ, will be best,
and so we compare various models for a range of values, λ1 < λ2 < ... < λρ. We begin with λ1

and employ our EM-algorithm using the correspondence analysis method of choosing initial
values. We then run the algorithm for λ2 using the estimates for λ1 as the initial values.
We then continue in this fashion until λρ. This approach is more computationally efficient
than starting back at B0 for each value of λ, because the estimates for adjacent λ values will
tend to be ‘close’ to each other—especially when the difference between λ values is small—
resulting is faster convergence (Friedman et al. 2010). We choose λ by cross-validation and
comparing the resulting CVIC values. Cross-validation is what really lengthens computing
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time. When cross-validation computation time is too long, we recommend using λ = 1 as a
reasonable default value.

Biplots and prediction. The estimate of the first and second ordination axes at observa-
tional unit, i, are, ∑

l

xl2ql|i (A.50)

and ∑
l

xl4ql|i (A.51)

This is a special case of Eq.A.13. We can also calculate the probability of observing species
j at observational unit i given the pattern of all of the other species, (−j), at i,

pij|i(−j) =

∑
l pi|lql∑
l p

(−j)
i|l ql

(A.52)

where p
(−j)
i|l is defined by,

log(p
(−j)
i|l ) =

∑
k

∑
j′ 6=j

log(pij′|l) (A.53)

which is just Eq.A.34 with species j omitted. Various other probabilities can be calculated
by leaving out various other species in the numerator and denominator of Eq.A.52.

VII. Why CVIC is practically unbiased

Let Y and Z be multivariate data sets of size n and n − 1 respectively, such that all
2n− 1 multivariate observations have the same multivariate distribution. Let yi be the ith
observation in Y and Y(i) be Y with the ith observation omitted. For convenience, I use
a notation for probability densities that is slightly different from the main text. Let P (·|Z)
indicate probability density given a model fitted to Z. Then,

CVIC = −2
n∑
i=1

log(P (yi|Y(i))). (A.54)

The expected value of CVIC is,

E(CVIC) = E(−2
n∑
i=1

log(P (yi|Y(i))))

= −2
n∑
i=1

E(log(P (yi|Y(i))))

= −2
n∑
i=1

E(log(P (yi|Z)))

= −2nE(log(P (yi|Z)))

= −2E(log(P (Y|Z))).

(A.55)

The first step from line one to line two follows by the linearity of expected value (Evans and
Rosenthal 2002). The second step follows because Z and Y(i) have identical distributions.
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The third and fourth steps follow because all yi have identical distributions. Note that
the right-hand side of the final equation only differs from the expected Kullback-Leibler
information because the training data, Z, have sample size n − 1 instead of n. Because
the expected value of CVIC is equivalent to a quantity that is very similar to the expected
Kullback-Leibler information, we do not expect the bias of CVIC to be substantial.
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