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Appendix F: A simple hypothetical tree with completely distinct lineages 
 

In Example 1 of the main text, we considered two assemblages of landlocked organisms (Fig. 
F1) that originated on a super-continent that broke into two parts. Assume that the two 
assemblages evolved in isolation for approximately T years. Although this example is simple, it 
provides an initial comparison so that the analyses for more complicated example and real data can 
be better understood.  
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Fig. F1: A simple hypothetical tree. All S species in each assemblage diverged from their common 
ancestor T years ago, and all species are equally common in each assemblage.  
 
(1) q = 2 case 

 
Let us first apply Rao’s quadratic entropy Q, the most frequently used measure that 

incorporates both abundances and phylogeny, to this simple tree (Fig. F1). Usually the distance 
measure used is the branch length in years connecting any two individuals in the assemblage to 
their most recent common node. Then Rao’s quadratic entropy, in its non-normalized form, is the 
mean divergence time between two randomly chosen individuals of an assemblage. In this 
example, the divergence time between two individuals is zero if they belong to the same species, 
and T otherwise (see Fig. F1). If there are S species in each continental assemblage, the quadratic 
entropy Q of each continent will be 0 ×(1/S) + T ×(1−1/S) = T(1−1/S). This would be the alpha 
quadratic entropy Qα of the assemblages. For any fixed T, the alpha value will be high (i.e., tends 
to the maximum possible value of T) if and only if species richness S is high. The gamma value is 
the quadratic entropy of the pooled assemblage, Qγ = T[1−1/(2S)]. For traditional additive 
partitioning based on quadratic entropy, the quadratic entropy excess or “beta” diversity is defined 
as gamma minus alpha, in this case Qγ − Qα = T/(2S). When S is high, this “beta” diversity 
necessarily approaches zero, even though the lineages of the two assemblages are completely 
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distinct (no shared lineages) since the date of the root of the tree.  
 
The “differentiation” measure J2N (T) is obtained by dividing this “beta” by the gamma 

quadratic entropy (e.g. Hardy and Senterre 2007). A value near zero would be interpreted as 
indicating little or no differentiation, while a value near unity would be interpreted as indicating 
high differentiation. However, in this case the differentiation measure reduces to J2N (T) = [T/(2S)]/ 
[T − T/(2S)] = 1/(2S−1), a number that approaches zero when alpha is high (equivalently, when S 
is high), even though the two assemblages are completely distinct and have been evolving 
independently since time T. Our theoretical result in the main text implies that when the 
within-assemblage quadratic entropy is high, the additive “differentiation” measure based on 
quadratic entropy always tends to zero for any assemblages, not just for simple completely distinct 
trees. These behaviors of additive “beta” and differentiation “beta”/gamma are exactly like the 
well-known problems of its parent measure, the Gini-Simpson index (Jost 2006, 2007, Hardy and 
Jost 2008). Similar findings hold for more complicated trees and real data as shown in the main 
text. In Fig. F2 (left panel), we show the pattern of the differentiation J2N (T) as a function of 
species richness. This function is decreasing to 0 as S is large. The measure J2N (T) is independent 
of T, as shown in Fig. F2 (right panel) specifically for S = 10. 

 
Biologists using Q to make conservation decisions for this imaginary set of continents with 

large S will conclude that since the additive “differentiation” measure is near zero, the second 
continent is superfluous and need not be a conservation priority. Yet the assemblages are equally 
diverse and share no species, and have been evolving in isolation since time T, so each may consist 
entirely of endemic genera or families.  

 
Now turn to our proposed phylogenetic beta diversity (Eq. 10b in the main text) for q = 2, 

with our temporal perspective T as the age of the continental split (the age of the basal node).  
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implying that there are two distinct assemblages, as expected. All the differentiation measures (see 
Table 1 of the main text) take the maximum possible value of unity for all S. For examples, the 
proposed differentiation measures )(1 2 TC N  and
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This is consistent with our intuition, because the two assemblages are completely distinct after 
time T, so the differentiation should attain the maximum value of unity.  
 
(2) q = 1 case 

 
For q = 1, traditional additive decomposition is based on the phylogenetic entropy Hp = 

iii i aaL log . For the tree in Fig. F1, we have the alpha value ,PH = T (log S), and the gamma 

value ,PH = T [log(2S)]. The additive “beta” (phylogenetic entropy excess) is ,PH ,PH  = 

T(log2), and the “differentiation” measure J1N (T) = (log 2)/[log(2S)]. When gamma is high 
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(equivalently, when S is large), this differentiation measure tends to zero (Fig. F2, left panel), 
supposedly indicating no differentiation, even though the two assemblages are completely distinct. 
This counter-intuitive behavior will arise for all trees, not just for simple completely distinct trees. 
As we have proved in Theorem E1 of Appendix E, traditional additive “beta” entropy for any tree 
is bounded by NT log , implying “beta”/gamma always tends to zero if gamma is large. Although 
in the case of q =1, alpha and “beta” (HP excess) are independent, “beta”/gamma is not a 
legitimate measure of differentiation (because the numerator and denominator do not obey the 
Replication Principle). As shown in Table 1 of the main text, dividing “beta” by T log N, we obtain 
the correct differentiation value of unity for this example.  

 
When assemblage weights are equal, our proposed beta in terms of phylogenetic entropy is 

given in Eq. 10a for q = 1. For any temporal perspective T, we have  
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indicating that there are two completely distinct assemblages. The proposed differentiation 
measures are )(1)(1 11 TCTU NN   12log/2loglog/)(log1  NTD  (see Table 1 of the 

main text for N = 2) for all S and all T; see Fig. F2. 
 
(3) q = 0 case 
 

The phylogenetic generalized entropy for the case q = 0 is based on 0I(T) = total branch 
length L(T) minus tree height T. For the simple tree in Fig. F1, we have gamma branch length 

TSTL 2)(   
and alpha branch length )(TL = TS. Thus, the alpha value 0Iα(T) = )(TL −T = (S 

−1)T and the gamma value 0Iγ(T) = )(TL −T = (2S −1)T, implying the additive “beta” is ST. 

Clearly, this beta is positively constrained by alpha for any fixed T. The “differentiation” in this 
special case is J0N (T) = S/(2S −1). When S is large enough, this differentiation measure tends to 
the value of 1/2 (see Fig. F2) for this example and in general it tends to 1−1/N for N completely 
distinct assemblages. For small values of S, this differentiation measure gives a value that is 
different from 1/2 (Fig. F2).  

 
Our proposed beta for q = 0, for any temporal perspective T, is )(0 TDβ = )(/)( TLTL  = 2, 

correctly indicating two completely distinct assemblages in the region. Our proposed 
differentiation measure is given in Table 1 in terms of tree length turns out again to correctly take 
its maximum possible value of unity. That is,  
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The upper bound in Eq. 13b of the main text for the traditional additive “beta” in this case reduces 
to STTITN  )]()[1( 0

 . Dividing the additive “beta” 0Iγ(T) − 0Iα(T) = ST by this upper bound, 

we see the normalized value is equal to unity for all S and all T; see Fig. F2. Similarly, the upper 
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bound in Eq. 13d for the traditional additive “beta” reduces to STTITN  )]()[1( 01
 . Again, 

the normalized value is equal to unity for all S and all T. 
  

In summary, for the simplest tree for a pair of assemblages with completely distinct lineages, 
defined in Fig. F1, our proposed normalized phylogenetic differentiation measures 1− )(TCqN  and

 
)(1 TUqN  (based on our mean phylogenetic diversity) are always 1 for all q = 0, 1, 2, and all 

richnesses S and all temporal perspective T, indicating that we have two completely distinct 
assemblages over this time interval; see Fig. F2. In contrast, the traditional differentiation measure 
JqN (T) (based on phylogenetic generalized entropies) depends on S. We have J2N(T) = 1/(2S−1), 
J1N (T) = (log2)/[log(2S)], and J0N(T) = S/(2S −1). As shown in Fig. F2 (right panel) for S = 10, J2N 
= 0.053, J1N = 0.23 and J0N = 0.53. The left panel of Fig. F2 shows, as S tends to be large, that both 
J2N and J1N approach to zero and J0N approaches 1/2. These erratic behaviors show that traditional 
approach based on phylogenetic generalized entropies does not work even for the simplest trees. 
However, as we have proved in Theorems E1 and E2 in Appendix E, traditional approach can be 
easily fixed by normalization. The normalized measures turn out to be the proposed differentiation 
measures 1− qNC  and
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Fig. F2: Comparison of the proposed differentiation measures, 1− )(TCqN  and )(1 TUqN  (based 

on our mean phylogenetic diversity) and the traditional differentiation measure JqN (T) (based on 
the traditional additive partitioning of phylogenetic generalized entropy).  
(Left panel) Plots of the differentiation measures as a function of species richness. All measures 
are independent of the value of T. Both the proposed measures, 1− )(TCqN  and )(1 TUqN , are 

unity for all q = 0, 1, 2 and all richness S. The measure JqN (T) depends on q: for q = 0, measure 
tends to 1/2 when S is large; for q = 1, measure tends to 0 when S is large; for q = 2, measure tends 
to 0 when S is large.  
(Right panel) Plots of the differentiation measures as a function of T given S = 10 for q = 0, 1 and 
2. 
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