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APPENDIX E. Mathematical flaws in the traditional additive approach based 
on generalized entropy excess or phylogenetic generalized entropy excess 
 
Non-phylogenetic approach based on the generalized entropies  
 

When our goal is to measure similarity and differentiation among multiple assemblages, 
traditional approach that incorporates species relative abundances has been based on additive 
partitioning of generalized entropy qH (including Shannon entropy and the Gini-Simpson index) or 
phylogenetic generalized entropy qI (T) (including phylogenetic entropy HP and quadratic entropy 
Q). We first review the non-phylogenetic version (Jost 2006, 2007 and Jost et al. 2010) so that 
readers can better understand what the mathematical flaws are in the additive approach. Since the 

generalized entropies )1/()1(   qpH i
q
i

q  include Shannon entropy and the Gini-Simpson 

index as special cases, our discussion is focused on the additive “beta” based on the generalized 
entropy excess. Since the “beta” diversity for the Gini-Simpson index is related to our measure 
only in the equal-weight case (see Table 1 of the main text), we focus on the equal-weight case 
and show how to fix and connect the additive measures to our measures. 

 
Let Hq  and Hq  denote respectively the gamma and alpha generalized entropies. The 

additive “beta” (generalized entropy excess) is defined as   HH qq
Hq . Jost et al. (2010, p. 

73, their Eq. 8) proved the following relationships which show how the additive “beta” is 
constrained by alpha generalized entropy (equivalently by gamma generalized entropy, as will be 
shown later of this Appendix):   
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We discuss the following three special cases in detail so that we can transparently see how the 
generalized entropy excess depends on alpha for each order q = 0, 1 and 2.  
 
(1) q = 2 case 

For q = 2, Eq. (E.1) gives the inequality )/11(,, NHH GSGS   )1( ,GSH , where HGS, γ 

and HGS, α denote respectively gamma and alpha Gini-Simpson measures. This shows that the 
“beta” Gini-Simpson is confounded with alpha, and is negatively constrained by alpha. When the 
alpha Gini-Simpson is high (i.e., when ,GSH tends to 1), the maximum value of “beta”, 

)1)(/11( ,GSHN  , tends to 0. So the “beta” Gini-Simpson is necessarily to be small, regardless 

of the actual differentiation between groups. In this case, the differentiation measure 
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“beta”/gamma always approaches zero, and the similarity measure alpha/gamma always 
approaches unity (Jost 2006, 2007), supposedly indicating a high degree of similarity between 
groups, even when the groups are completely dissimilar (no shared species). Due to this 
dependence on alpha, the additive “beta”/gamma based on the Gini-Simpson index does not 
measure differentiation, and alpha/gamma does not measure compositional similarity. One way to 
fix this (Jost et al. 2010) is to normalize the additive “beta” by dividing it by its upper limit given 
the observed values of alpha and N, yielding )/11/[()( ,, NHH GSGS   )]1( ,GSH , which is 

identical to our equal-weight differentiation measure 1−C2N (see Table 1 of the main text).  
 
(2) q = 1 case 

For q = 1, Eq. (E.2) shows that the additive “beta” entropy is bounded by a constant log N, 
not on alpha, as the additive partitioning for entropy really is a complete partitioning. So under an 
additive framework, traditional differentiation as measured by (“beta” entropy)/(gamma entropy) 
must tend to zero if the denominator (gamma entropy) is large. This partly explains why, even 
though additive “beta” entropy measures pure differentiation, additive “beta”/gamma based on 
entropy is not a proper differentiation measure. (Another reason is that entropies do not obey the 
Replication Principle). Also, when gamma Shannon entropy is high, the so-called similarity 
measure alpha/gamma approaches unity. Thus the additive alpha/gamma based on entropy does 
not measure compositional similarity (again, because entropies do not obey the Replication 
Principle). It is also readily seen from Eq. (E.2) that for entropy, instead of using beta/gamma, one 
should use the normalized measure “beta”/(log N) in the range [0, 1] as a proper differentiation 
measure. As shown in Chao et al. (2012), entropy “beta”/(log N) is identical to equal-weight 1−C1N 
measure defined in Table 1 of the main text.  

 
Thus, the additive approach applied to the two concave measures (entropy and Gini-Simpson 

index, which is a generalized entropy) may lead to inconsistent conclusions and biologically 
misleading interpretations (Jost 2006, 2007). All authors in a recent Forum on diversity 
partitioning (Ellison 2010 and papers following it) therefore agreed that diversity measures should 
be based on Hill numbers instead of Shannon entropy and the Gini-Simpson measure. 
 
(3) q = 0 case 

For q = 0, Eq. (E.1) is equivalent to the constraint SNSS )1(  , where S denotes species 

richness in the pooled assemblage (gamma species richness) and S  denotes the average species 
richness in an individual assemblage (alpha species richness). Eq. (E.1) implies that the “beta” 
species richness is confounded with alpha, and is positively constrained by alpha. The generalized 
entropy of order 0 is species richness minus one, but here we just use species richness instead 
because the latter is the measure that has been considered for diversity decomposition. Based on 
species richness, the differentiation measure “beta” /gamma = SSS /)(  = )1)(/11( 0NUN   

where U0N is the homogeneity measure defined in Table 1 of the main text. Thus, “beta”/gamma 
based on species richness can be used as a differentiation measure, but its range still depends on N 
since it ranges from 0 (when all assemblages are identical) to 1−1/N (when all assemblages have 
no shared species). Our approach is to remove the dependence of the additive “beta” on alpha by 
using a normalized measure ])1/[()( SNSS  , which is identical to 1−C0N (see Table 1 of the 
main text). The normalized measure is always in the range [0, 1] so it can be compared across 
regions with different number of assemblages.  
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For a general order q > 1, Eq. (E.1) shows that additive “beta” generalized entropy is strongly 
negatively constrained by the value of alpha. If alpha generalized entropy of order q > 1 tends to 
the maximum possible value 1/(q−1), then the “beta” is necessarily to be small. In contrast, for q < 
1, Eq. (E.1) shows that the additive “beta” generalized entropy is positively constrained by the 
value of alpha. As shown for the orders q = 0 and 2 above, the dependence of the additive 
generalized entropy “beta” on its alpha can be removed by dividing the additive “beta” by its 
maximum possible value in Eqs. (E.1) and (E.2). Based on those maximum values and the 
relationship between Hill numbers and generalized entropy, ))(1(1)( 1 HqD qqq  , we can 
readily show that the normalized measure turns out to be 1– CqN. That is, for q ≠ 1, we have 
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For q = 1, the entropy “beta” should be normalized by the upper bound log N. The normalized 
measure becomes  
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  The dependence relationship in Eq. (E.1) is equivalent to the following constraint which shows 

how the additive “beta” generalized entropy depends on gamma generalized entropy:    
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Parallel discussion to those for the dependence on alpha can be made. Here we only single out the 
special case of q = 2. In this case, Eq. (E.5) gives the constraint )1(,,  NHH GSGS  )1( ,GSH . 

This shows that the “beta” Gini-Simpson is also negatively confounded with gamma. When the 
gamma Gini-Simpson is high (i.e., ,GSH tends to 1), the maximum value of “beta”, 

(N−1) )1( ,GSH , tends to 0. So the “beta” Gini-Simpson is necessarily to be small. We note that 

for the Gini-Simpson index, Eq. (C.7) in Appendix C implies that 1
, )1(  GSH 1

, )1(  GSHN . 

Thus, for a fixed N, ,GSH  tends to 1 if and only if ,GSH  tends to 1. The condition “alpha 

Gini-Simpson is high” is equivalent to the condition “gamma Gini-Simpson is high”.  
 

For a general order of q, we can remove the gamma-dependence by normalization. Dividing 
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 HH qq   by its maximum, the normalized measure turns out to be qNU1 . That is,  
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For q = 1, the entropy “beta” should be normalized by the upper bound log N in Eq. (E.6). The 
normalized measure becomes  





)max( 11

11





HH

HH
.11

log

)(
11

11

NN CU
N

HH


   (E.8) 

Thus eliminating the gamma dependence, we get a class of complementarity measures.  
 

The above discussion shows the generality of the two classes of overlap measures CqN and 
UqN, because they are the normalized similarity measures that are common to both the additive 
approach based on generalized entropy and the approach based on Hill numbers.  
 
Traditional additive framework based on the phylogenetic generalized entropies  
 

We now extend the dependence relationships in Eqs. (E.1) and (E.2) to the phylogenetic 
generalizations in the following Theorem E1, and extend the dependence relationships in Eqs. (E.5) 
and (E.6) to the phylogenetic generalizations in the following Theorem E2.  
 
Theorem E1: The phylogenetic generalized entropy excess (or the phylogenetic additive “beta” in 
the main text), )()()( TITITI qqq

  , depends on alpha generalized entropy through the 

following inequality (see Eq. 13b, 13c in the main text)   

1

)]}()[1(){1(
)()()(0

1







q

TIqTN
TITITI

qq
qqq 

 ,  q ≠ 1. (E.9) 

For q = 1, we have 
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The normalized measures turn out to be:  
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Proof: From Eq. 2c of the main text, the phylogenetic generalized entropy can be expressed as 
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qI(T) = (T − Ti
q
ii aLB )/ (q −1). 

Then we can obtain the relationship between qI(T) and our mean phylogenetic diversity )(TD : 
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In Eq. (C.7) of Appendix C, we have proved )]([)( TDNTD qq
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If q < 1, the above implies  
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which then implies  
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For q > 1, we obtain exactly the same inequality. We thus finish the proof of (E.9). For the case of 
q = 1, Eq. (E.10) follows by direct computation. To obtain the normalized measure in Eq. (E.11), 
we note from Eq. (E.13), 
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This leads to the following for q ≠ 1 
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The proof for the case of q = 1 is straightforward and thus omitted.  
 
Theorem E2: The phylogenetic generalized entropy excess (or the phylogenetic additive “beta” in 
the main text), )()()( TITITI qqq

  , depends on gamma generalized entropy through the 

following inequality (Eq. 13d in the main text)   
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For q = 1, we have 
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The normalized measures turn out to be:  
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Proof: In Eq. (C.8) of Appendix C, we have proved )(/)( TDNTD qq
  . Then from Eq. (E.13), 

we have  
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The proof steps are then parallel to those in Theorem E1 and thus are omitted. 
 
Generalizing to non-ultrametric cases 
  

In Pavoine et al.’s (2009) original formulation (see Eq. 2d of the main text and Appendix A), 
phylogenetic generalized entropy can be defined only for ultrametric trees. We give a new 
formulation in Eq. 2c of the main text. We can readily extend Eq. 2c to non-ultrametric trees. That 
is, phylogenetic generalized entropy which is a function of mean base changeT can be formulated 
as 

qI(T ) = [T − Ti
q
ii aLB ] / (q −1). 

For the non-ultrametric cases we can extend Eq. (E.13) to the following relationship between our 
mean phylogenetic diversity and phylogenetic generalized entropy:  
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Then all conclusions in Theorems E1 and E2 can be similarly extended to the non-ultrametric 
cases by substituting T for T. Therefore, all mathematical flaws associated with the ultrametric 
cases are also carried over to the non-ultrametric cases. However, normalization can be applied to 
fix the flaws and we obtain the same classes of similarity and differentiation measures as those in 
Table 1 of the main text.   
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