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Appendix D: Proof details for some formulas (Eqs. 5, 8, 9b, 11a and 11b of the main text) 

and a replication principle 

 

Proposition D1 (Eqs. 5 and 8 in the main text): Assume that sample species frequencies (X1, 

X2, …, XS) obey this multinomial model with cell total n and cell probabilities (p1, p2, …, pS): 
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(a) The frequency counts expected in a sample of size m consist of the frequency counts  

{E[fk(m)]; k = 1, …, m} and  
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(b) Let Sind(m) be the expected species richness in a sample of size m; see Eq. (B.1) of Appendix 

B. Then the species richness based on the expected frequency counts {E[fk (m)]; k = 1, …, m} 

is identical to Sind(m) for any m. That is,  
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This implies that the species richness based on the expected frequency counts in a sample of 

size m is identical to the expected species richness in a sample of the same size. 

(c) The minimum variance unbiased estimator of the expected frequency count )]([ mfE k  is  
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 if a < b.  We use this conventional definition throughout this Appendix.  

Proof:  
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(a) Assume that the ith species are represented by Zi (m) individuals in a sample of size m. Under 

the multinomial model, the variable Zi (m) follows a binomial distribution with parameter m 

and probability pi. Then  
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(b) The conclusion in (b) follows from the following identity: 
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(c) Under the multinomial assumption, the sample frequency Xi  in the reference sample follows a 

binomial distribution with parameter n and probability pi. Then we have 
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From the Rao-Blackwell and Lehmann-Scheffé Theorems (e.g., Casella and Berger 2002, p. 347 

and p. 369), the estimator is the unique minimum variance unbiased estimator of the expected 

abundance frequency. 
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Proposition D2 (Eq. 9b in the main text): The estimated species richness )(ˆ0 mD  based on the 

observed species frequency counts )(ˆ mfk , k = 1, …, m for a rarefied sample of size m, is 

identical to the traditional abundance-based rarefaction function. That is, we have 
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where )(
~

mSind  is the traditional rarefaction formula given in Eq. (B.2),  



























 


0

)(
~

iX

i

obsind
m

n

m

Xn
SmS ,  m < n.  

This concludes that the species richness based on the estimated frequency counts in a rarefied 

sample of size m is identical to the estimated species richness in a rarefied sample of the same 

size. This implies the data-based version of the theoretical relationship in (b) of Proposition D1 is 

valid for rarefied samples.   

Proof: The result follows from the following derivations: 
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Proposition D3 (Eqs. 11a and 11b of the main text):  Under the model assumption in Proposition 

D1, we have the following conclusions.  

(a) For m ≥ 1, we have 
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(b) The two estimators for )(ˆ2 mD  in Eq. 11b of the main text are identical. That is,   



4 

 






















S

i

iim

k
k nn

XX

m

m

m
mf

m

k
mD

1
1

2

2

)1(

)1(11

1

)(ˆ

1
)(ˆ  .

 

Proof:  

(a) Let Zi (m) be a binomial distribution with parameter m and probability pi, as we defined in the 

proof of Proposition D1. Then we can express 
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(b) Note that we have 




















 m

k
k

m

k m

k
mf

m

k

1

22

1

)(ˆ


































m

n

km

Xn

k

X ii

kX i

 

,

2

1














iX

i

m

R
E

 

where Ri is a hypergeometric random variable with the probability density function: 

.

m

n

km

Xn

k

X

kRP

ii

i































 )(

 

Using the expectation and variance of a hypergeometric distribution, we obtain  


 
















































1

22

1

var
ii X

ii

X

i

m

R
E

m

R

m

R
E   



5 

 
































1

2

1

)()(1

iX

iii

n

X

n

mn

n

Xn

n

X

m
 

.
)1(

)1(11

1


 




iX

ii

nn

XX

m

m

m
 

 

A replication principle and its generalization  

Proposition D4: A replication principle for the model of abundance data. Assume that 

Assemblage 2 consists of K replicates of Assemblage 1. Each replicate has the same number of 

species and the same species abundances as Assemblage 1, but with completely different, unique 

species in each replicate. A sample of m individuals is taken from Assemblage 1. Then the 

sample size needed in Assemblage 2 to attain the same expected sample coverage is 

approximately Km, and the expected diversity of any order q ≥ 0 in Assemblage 2 for the sample 

with standardized coverage is approximately K times of that in Assemblage 1.  

Proof: Without loss of generality, we prove the theorem for K = 2 (doubling property). Assume 

that there are S species in Assemblage 1, with species relative abundances or species 

probabilities (p1, p2, …, pS). Since Assemblage 2 is a doubled replicate of Assemblage 1, in 

Assemblage 2 there are 2S species with relative abundances (p1/2, p1/2, p2/2, p2/2, …, pS /2, pS /2). 

As proved by Chao and Jost (2012, their Appendix A), if a sample of m individuals is taken from 

Assemblage 1, then the sample size needed in Assemblage 2 to attain the same expected sample 

coverage is approximately Km. In this case, the expected diversity of order q in Assemblage 1 

based on Eq. 6 of the main text is 
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Here the abundance frequency count fk,1(m) is the number of species represented by exactly k 

individuals in a sample of size m in Assemblage 1. From Eq. 5 of the main text, when m is large 

enough we have for k = 0, 1, …, m  
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The approximation is satisfactory in the following sense: either the both sides of (D.2) are 

negligible, or the relative error with respective to the right hand side of (D.2) tends to zero; see 

Harris (1959, his Appendix A) for proof details. For Assemblage 2, the expected diversity of 

order q with a sample of 2m is 
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Here the abundance frequency count fk,2(2m) is the number of species represented by exactly k 

individuals in a sample of size 2m in Assemblage 2. Again, it follows from Harris (1959) that  

for k = 0, 1, …, 2m 
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The above approximation is in the same sense as that in Eq. (D.2). This shows the following 

relationship for any k: 

)]2([ 2, mfE k )]([2 1, mfE k . (D.5) 

Note that in Assemblage 1, no species probability in the abundance set (p1, p2, …, pS) of 

Assemblage 1 is greater than unity, so any species probability in the abundance set (p1/2, p1/2, 

p2/2, p2/2, …, pS /2, pS /2) of Assemblage 2 is not greater than 1/2. Note that for any k > m in Eq. 

(D.3), we have 2/1)2/( mk . So the limit in the summation is only from k = 1 to k = m. It then 

follows from (D.3) and (D.5) that we have  
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which shows that the expected diversity of Assemblage 2 for a sample of size 2m is 

approximately double that of Assemblage 1 for a size of m, if both samples are standardized to 

the same degree of completeness. A similar proof can be made for q = 1 and any value of k.  

A critical step in the proof is the approximation formula )]2([ 2, mfE k )]([2 1, mfE k  derived 

in Eq. (D.5). A simple explanation can be seen from the perspective of species frequencies. Note 

that the expected species frequencies for the abundance set (p1, p2, …, pS) of Assemblage 1, 

based on a sample of size m, are  (mp1, mp2, …, mpS). The expected species frequencies for the 

abundance set (p1/2, p1/2, p2/2, p2/2, …, pS /2, pS /2) of Assemblage 2, based on a sample of size 

2m, are  (mp1, mp1, mp2, mp2,…, mpS, mpS), which is a duplication of the frequency set of 
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Assemblage 1. This intuitively validates Eq. (D.5) and explains why the sample size must be 

doubled in Assemblage 2 in order to standardize sample coverage. It also explains why the 

expected diversity for standardized sample size does not obey the replication principle.  

Following the proof of Chao and Jost (2012, their Appendix A), we can obtain a 

generalization of the replication principle by means of the following proposition.  

Proposition D5: A generalization of the replication principle discussed in Proposition D4. If 

Assemblage 2 is unambiguously K times more diverse than Assemblage 1 (i.e., for all q ≥ 0, Hill 

number of order q of Assemblage 2 is K times that of Assemblage 1), then in the coverage-based 

standardization, the expected diversity of any order q ≥ 0 in Assemblage 2 is approximately K 

times of that in Assemblage 1.  
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