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Appendix B Locations and stabilities of the equi-

librium points

Let PR1R2 denote the coexistence equilibrium of the subsystem where only R1 and
R2 are present (assuming it exists). Let PRiNj

denote the coexistence equilibrium of
the subsystem where only Ri and Nj are present. Let P3,Nj

denote the coexistence
equilibrium of the subsystem where only R1, R2 and Nj are present (assuming it
exists). Let P4 denote the coexistence equilibrium where the densities of all four
species are positive. We refer to PR1R2 , PRiNj

, and P3,Nj
as boundary equilibria. In

the following, we denote the entries of the two-species equilibria using overbars (e.g.,
R̄1), the entries of the three-species equilibria using hats (e.g., R̂1), and the entries of
the four species equilibria using asterisks (e.g., R∗

1).

Appendix B.1 Definition and stability of the two-species equi-
libria

There are five two-species equilibria. To be biologically relevant the equilibrium
densities of both species must be positive. The boundary equilibrium where R1 and
R2 coexist is

PR1R2 = {R̄1, R̄2} =

{
1

1− α2

(
r1
k1
− r2αq

k2

)
,

1

1− α2

(
r2
k2
− r1α/q

k1

)}
. (B1)

This equilibrium can be invaded by Nj if 0 < bj1cj1R̄1 + bj2cj2R̄2− dj where R̄i is the
equilibrium density of Ri at PR1R2 .

The four remaining two-species equilibria each involve one predator species and
one prey species. The boundary equilibrium where Ri and Nj coexist is

PRiNj
= {R̄i, N̄j} =

{
dj
bjicji

,
ri
cji

[
1− djki

bjicjiri

]}
. (B2)
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Table B1: Stability conditions for two-species boundary equilibria

Eq. Stability Condition Resource Partitioning
(prey invasion)

(predator invasion) ∆, ∆̄ > 0 ∆̄,∆ < 0

PR1N1 r2

(
1− d1k2

b11c11r2
α/q

)
− c12r1

c11

(
1− d1k1

b11c11r1

)
± +

b21c21d1 − b11c11d2 + −

PR2N1 r1

(
1− d1k1

b12c12r1
αq
)
− c11r2

c12

(
1− d1k2

b12c12r2

)
+ ±

b22c22d1 − b12c12d2 − +

PR2N2 r1

(
1− d2k1

b22c22r1
αq
)
− c21r2

c22

(
1− d2k2

b22c22r2

)
± +

b12c12d2 − b22c22d1 + −

PR1N2 r2

(
1− d2k2

b21c21r2
α/q

)
− c22r1

c21

(
1− d2k1

b21c21r1

)
+ ±

b11c11d2 − b21c21d1 − +
Legend: + can invade, − cannot invade, and ± invasion depends on parameters

Let Nk and Rh denote the two species not present at PRiNj
. Nk can invade if

bkickidj − bjicjidk > 0. (B3)

Rh can invade if

rh

(
1− djkh

bjicjirh
αhi

)
− cjhri

cji

(
1− djki

bjicjiri

)
> 0. (B4)

The stabilities of the four 1-predator,1-prey equilibria are shown in Table B1. Note
that the stabilities depend on the signs of ∆ and ∆̄. In Table B1, + implies invasion
by that species is possible, − implies invasion is not possible by that species, and ±
implies either outcome is possible.

Note that if both of the above two inequalities are reversed for a particular the 1-
predator,1-prey equilibrium, then that equilibrium cannot be invaded. It is possible
to choose parameter values such that there are two uninvasible 1-predator,1-prey
equilibria. This occurs in two cases: (i) all invasion conditions for PR1N1 and PR2N2

are negative or (ii) all invasion conditions for PR1N2 and PR2N1 are negative. In both
cases the system exhibits bistability and four-species coexistence is not possible.
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Appendix B.2 Definition and stability of the three-species
equilibria

There are two three-species equilibria. The equilibrium where R1, R2 and Nj coexist
is

P3,Nj
= {R̂1, R̂2, N̂j} =

{
cj2(r1bj2cj2 − djk1αq)− cj1(r2bj2cj2 − djk2)

cj1k2(bj1cj1 − bj2cj2α/q) + cj2k1(bj2cj2 − bj1cj1αq)
,

cj1(r2bj1cj1 − djk2α/q)− cj2(r1bj1cj1 − djk1)
cj1k2(bj1cj1 − bj2cj2α/q) + cj2k1(bj2cj2 − bj1cj1αq)

,

r2k1(bj2cj2 − bj1cj1αq) + r1k2(bj1cj1 − bj2cj2α/q)− k1k2dj(1− α2)

cj1k2(bj1cj1 − bj2cj2α/q) + cj2k1(bj2cj2 − bj1cj1αq)

}
.

(B5)

We denote the denominator of the entries of P3,Nj
by σj = cj1k2(bj1cj1− bj2cj2α/q) +

cj2k1(bj2cj2−bj1cj1αq). As shown in appendix D, stable coexistence of all three species
occurs when σj > 0 and α < 1. If σj < 0, then stable coexistence is not possible
because P3,Nj

is a saddle with one eigenvalue with positive real part. P3,Nj
can be

invaded by the predator not present at equilibrium, Nk, if

bk1ck1R̂1 + bk2ck2R̂2 − dk > 0. (B6)

Appendix B.3 Definition and stability of the four-species equi-
librium

The four-species coexistence equilibrium is

P4 = {R∗
1, R

∗
2, N

∗
1 , N

∗
2} =

{
b12c12d2 − b22c22d1

∆̄
,
b21c21d1 − b11c11d2

∆̄
,

r2c21 − r1c22
∆

+
c22k1 − c21k2α/q

∆
R∗

1 −
c21k2 − c22k1αq

∆
R∗

2,

r1c12 − r2c11
∆

+
c11k2 − c12k1αq

∆
R∗

2 −
c12k1 − c11k2α/q

∆
R∗

1

}
.

Each Nj entry of P4 is positive if (1) the other three species can coexist (i.e., P3,Nk

has positive entries and σk > 0) and the three-species subsystem can be invaded by
Nj or (2) Nj can invade one of the two-species equilibria at which it is absent, e.g.,
N1 can invade PR1,N2 or PR2,N2 . The proof of this statement follows.

Theorem 1. Assume ∆ and ∆̄ have the same sign.
(i) If P3,N2 has positive entries, σ2 > 0, and N1 can invade P3,N2, then the N1 entry
of P4 is positive. Similarly, if P3,N1 has positive entries, σ1 > 0, and N2 can invade
P3,N1, then the N2 entry of P4 is positive.
(ii) Assume PRiNj

has positive entries for all i and j. All entries of P4 are positive
only if N1 can invade PRiN2 and N2 can invade PRhN1 for i 6= h.
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Proof. Proof of (i): We will prove the statement for the N1 entry. The proof for
the N2 entry is nearly identical. Denote the condition for N1 to invade P3,N2 , i.e.,
the left hand side of equation (B6), by C1. Note that C1 = N∗

2∆∆̄σ2 where N∗
2 is

the equilibrium density of N2 at P4. Since we assume ∆ and ∆̄ have the same sign,
σ2 > 0, and P3,N2 has positive entries, C1 and N2 have the same sign. Hence, invasion
(C1 > 0) implies N∗

2 > 0.
Proof of (ii) We will prove the result by way of a proof by contradiction. Via Table

B1, we have that if N1 can invade PR2N2 then N2 cannot invade PR2N1 . Similarly,
if N1 can invade PR1N2 then N2 cannot invade PR1N1 . Assume the entries of P4

are positive and N1 can invade both PR1N2 and PR2N2 . This implies that A1 =
(b12c12d2− d1b22c22) > 0 and A2 = (b11c11d2− b21c21d1) > 0. Because R∗

1 = A1/∆̄ and
R∗

2 = −A2/∆̄, it must be the case that either R∗
1 or R∗

2 is negative, which contradicts
our assumption that P4 has positive entries. Via an identical argument, if N1 can
invade both PR1N2 and PR2N2 , then either R∗

1 or R∗
2 is negative.

Equilibrium Stability: We now present some limited results about the stability of
P4. Figure 4 of the main text shows the locations of the Hopf bifurcation curves for
the numerical examples in Figures 1 and 2. Our two main findings are that (1) four-
species coexistence is not possible if ∆ and ∆̄ have opposite signs and (2) cycles are
more likely to occur when interspecific prey competition is sufficiently high (α close
to one) and asymmetric (q 6= 1). We also show that stable coexistence is guaranteed
when b11/b21 = b12/b22 and α is sufficiently small.

The Jacobian evaluated at P4 is

J |P4 =


−R∗

1k1 −R∗
1k1αq −c11R∗

1 −c21R∗
1

−R∗
2k2α/q −R∗

2k2 −c12R∗
2 −c22R∗

2

b11c11N
∗
1 b12c12N

∗
1 0 0

b21c21N
∗
2 b22c22N

∗
2 0 0

 . (B7)

The determinant of the Jacobian is N∗
1N

∗
2R

∗
1R

∗
2∆∆̄. Stable or cyclic coexistence of all

species only occurs in our Lotka-Volterra model when the determinant of the Jacobian
is positive. Consequently, coexistence is not possible if ∆ and ∆̄ have opposite signs.
When ∆ and ∆̄ have the same sign, stable or cyclic coexistence are possible.

The characteristic polynomial for the Jacobian is

p(λ) = λ4 + a1λ
3 + a2λ

2 + a3λ+ a4 (B8)

where

a1 = k1R
∗
1 + k2R

∗
2

a2 = R∗
1R

∗
2k1k2(1− α2) +N∗

1R
∗
1b11c

2
11 +N∗

1R
∗
2b12c

2
12 +N∗

2R
∗
1b21c

2
21 +N∗

2R
∗
2b22c

2
22

a3 = −R∗
1R

∗
2α(k1q + k2/q)(N

∗
1 b11c11c12 +N∗

2 b21c21c22)

+R∗
1R

∗
2(N

∗
1k2b11c

2
11 +N∗

1k1b12c
2
12 +N∗

2k1b22c
2
22 +N∗

2k2b21c
2
21)

a4 = N∗
1N

∗
2R

∗
1R

∗
2∆∆̄.

(B9)
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The number of roots with positive real part is given by the number of sign changes
in the sequence {A0, A1, A2, A3, A4} where A0 = 1, A1 = a1, A2 = a1(a1a2 − a3),
A3 = (a1a2 − a3)(a1a2a3 − a23 − a21a4), and A4 = a4. By inspection, A0, and A1 are
positive. A2 is positive under our assumption that α ≤ 1. A4 has the same sign
as ∆∆̄, which is positive since we assume ∆ and ∆̄ have the same sign. Thus, the
occurrence of cycles is determined by the sign of A3: cycles arise when A3 is negative
and stable coexistence occurs when A3 is positive. After collecting powers of α and
q, we have

a1a2a3 − a23 − a21a4 = (c1 + c2)α
3 − c3α2 − c4α2q2 − c5α2q−2 + (c6 + c7)α + c8

(B10)

where ci is positive for i ≤ 5; c1 = O(q); c2 = O(q−1); c3, c4, c5, and c8 do not depend
on α or q; c6 = O(q); and c7 = O(q−1). The signs of the O(α2q2) and O(α2q−2) terms
in equation (B10) suggest that cycles will arise when interspecific prey competition is
sufficiently high (α is close to one) and sufficiently asymmetric (q is sufficiently larger
or smaller than 1).

Using a Lyapunov function, we now show that stable coexistence is guaranteed if
b11/b21 = b12/b22 and α < 2q

√
b11c11b12c12k1k2/(c11b11k1q

2 + c12b12k2).

Theorem 2. If b11/b21 = b12/b22, then P4 is globally Lyapunov stable when

(b12k2α/q + b11k1αq)
2 − 4b12b11k1k2 < 0. (B11)

Proof. Let P4 = (R∗
1, R

∗
2, N

∗
1 , N

∗
2 ). Our Lyapunov function is

V (R1, R2, N1, N2) = c1 [R1 −R∗
1 −R∗

1 ln(R1) +R∗
1 ln(R∗

1)]

+ c2 [R2 −R∗
2 −R∗

2 ln(R2) +R∗
2 ln(R∗

2)]

+ c3 [N1 −N∗
1 −N∗

1 ln(N1) +N∗
1 ln(N∗

1 )]

+ c4 [N2 −N∗
2 −N∗

2 ln(N1) +N∗
2 ln(N∗

2 )]

(B12)

for some constants ci > 0. Note that V (R1, R2, N1, N2) ≥ 0 for all positive values
of R1, R2, N1, and N2 and equality holds only at P4. Since dRi/dt(P4) = 0 and
dNj/dt(P4) = 0, we can write dV/dt as

dV

dt
= c1(R1 −R∗

1)

[
dR1

dt
− dR1

dt
(P4)

]
− c2(R2 −R∗

2)

[
dR2

dt
− dR2

dt
(P4)

]
− c3(N1 −N∗

1 )

[
dN1

dt
− dN1

dt
(P4)

]
− c4(N2 −N∗

2 )

[
dN2

dt
− dN2

dt
(P4)

]
.

(B13)

After algebraic manipulation we have

dV

dt
= −c1k1(R1 −R∗

1)
2 − c2k2(R2 −R∗

2)
2 − (c2k2α/q + c1k1αq) (R1 −R∗

1)(R2 −R∗
2)

+ (R1 −R∗
1)(N1 −N∗

1 ) (c3b11c11 − c1c11) + (R1 −R∗
1)(N2 −N∗

2 ) (c4b21c21 − c1c21)
+ (R2 −R∗

2)(N1 −N∗
1 ) (c3b12c12 − c2c12) + (R2 −R∗

2)(N2 −N∗
2 ) (c4b22c22 − c2c22)

(B14)
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The terms in the bottom two lines are zero when the coefficients ci satisfy

c3
c4

=
b11
b21

=
b12
b22
, c1 = b11c3, c2 = b12c3. (B15)

Recall that we assume b11/b21 = b12/b22. Setting c3 = 1 yields

dV

dt
= −b11k1(R1 −R∗

1)
2 − b12k2(R2 −R∗

2)
2 − (b12k2α/q + b11k1αq)(R1 −R∗

1)(R2 −R∗
2)

We want the conditions under which dV/dt ≤ 0 for all positive R1 and R2. Let
x = (R1 − R∗

1), y = (R1 − R∗
1), and c = b12k2α/q + b11k1αq. Then the condition

dV/dt ≤ 0 for all positive R1 and R2 is the same as determining when the conditions
on c are such that there does not exist a real solution to 0 = b11k1x

2 + b12k2y
2 + cxy.

Via the quadratic formula, this occurs when c2 − 4b11b12k1k2 < 0. Substituting for c
yields the result.


