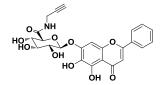
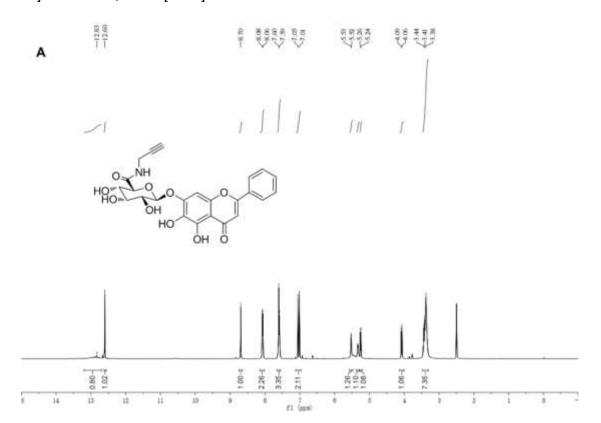

### **Supporting information**

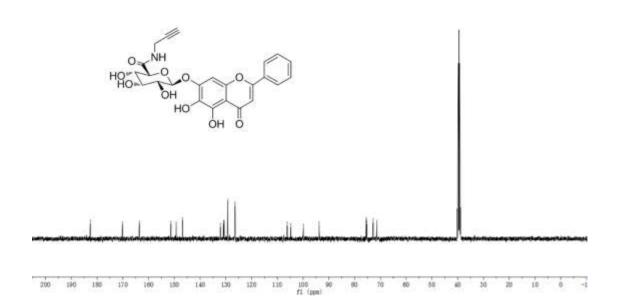
#### Synthesis section


#### **General Chemical Reagents and Methods**

All purchased reagents for synthesis were used without further purification. All solventswere available commercially, dried or freshly dried and distilledprior to use. Thin-layer chromatography (TLC) was performed on silica gel GF254 plates with detection using shortwaveUV light ( $\lambda$ =254 nm) and staining with 10% phosphomolybdic acid in EtOH, followed by heating on a hotplate. Flash chromatography was performed with silica gel (100-200 mesh) with EtOAc/ petroleum ether or CH<sub>2</sub>Cl<sub>2</sub>/ MeOH as eluent. <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on a Bruker AV 400 spectrometer at 400 MHz (<sup>1</sup>H NMR) and 100 MHz (<sup>13</sup>C NMR), using CDCl<sub>3</sub> as solvents. Coupling constants are reported in Hertz.




**Figure S1**. Synthetic route for compound 3 (alkynyl-modified baicalin probe). Reagents and conditions: (a) Di-succinimidyl carbonate , pyridine; (b) DIEA, propargylamine.


# Compound 3 Synthesis (alkynyl-modified baicalin probe)



Di-succinimidyl carbonate (688mg, 2.688mmol) was added to a solution of **compound 1** (400mg, 0.896mmol) and pyridine (0.433ml, 5.376mmol) in 20 ml of dichloromethane, and stirred at room temperature overnight. After completion of the reaction, 50 mL of dichloromethane was added for extraction, and the organic layer was washed with 20 mL of 1M HCl, 20 mL of saturated NaHCO3, and 20 mL of saturated brine in that order, then the organic layer was collected as a yellow solida is the crude intermediate. **compound 2** and DIEA (178µL,1.075mmol) were dissolved in 20 mL of DMF, and propargylamine (59.2 µL, 1.075 mmol) was added slowly under ice-cooling and slowly warmed to room temperature under argon protection for overnight. The mixture was concentrated in vacuo and purified by column chromatography on silica gel (dichloromethane: methanol=10:1) to obtain **compound 3** as a yellow solid. The yield of this reaction was 67% (290mg). <sup>1</sup>H NMR (400 MHz, DMSO-*d*6)  $\delta$  12.83 (s, 1H), 12.60 (s, 1H), 8.70 (s, 1H), 8.07 (d, *J* = 7.6 Hz, 2H), 7.59 (d, *J* = 7.1 Hz, 3H), 7.03 (d, *J* = 17.0 Hz, 2H), 5.53 (d, *J* = 3.4 Hz, 1H), 5.33 (s, 1H), 5.25 (d, *J* = 7.4 Hz, 1H), 4.08 (d, *J* = 9.5 Hz, 1H), 3.50 – 3.26 (m, 7H).<sup>13</sup>C NMR (100 MHz, DMSO-*d*6)  $\delta$  182.6, 170.1, 163.6, 151.3, 149.2, 146.8, 132.1, 130.9, 130.6, 129.2, 126.4, 106.2, 104.8, 99.9, 93.8, 75.5, 75.3, 72.8, 71.4. and the (-)-HR-ESI-MS spectrum of **compound 3** as shown in the Figure S3. m/z compound 3 calculated for C<sub>24</sub>H<sub>21</sub>NO<sub>10</sub>: 483.1165 ; [M-H<sup>+</sup>]=482.1093 ;found: [M-H<sup>+</sup>] 482.1090.



### B B



**Figure S2**. The NMR data of alkynyl-modified baicalin probe, (A) <sup>1</sup>H NMR spectrum of alkynyl-modified baicalin probe (400 MHz, DMSO-*d*6) and (B) <sup>13</sup>C NMR spectrum of alkynyl-modified baicalin probe (100 MHz, DMSO-*d*6).

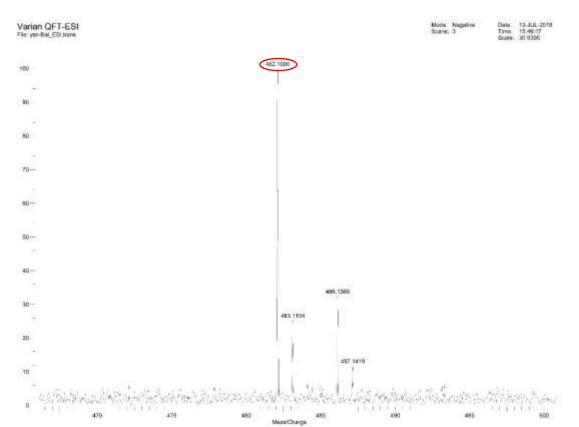
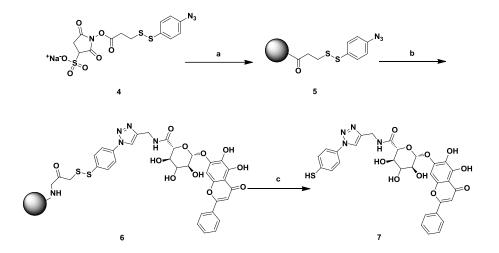
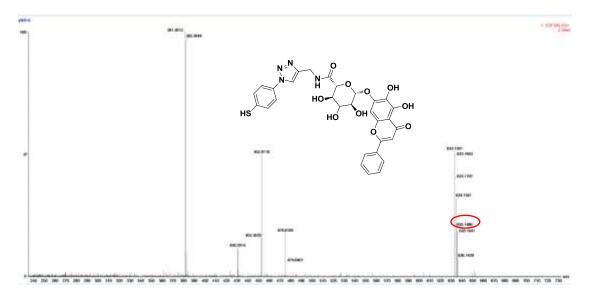




Figure S3 (-)-HR-ESI-MS spectrum of compound 3 as shown in the Figure S3.

Preparation of baicalin-modified functionalized MMs

A total of 6 mL NH2-MMs (5 mg/mL) was suspended in 6 mL borate buffer and Sulfo-SADP (3 mg, 66  $\mu$ M) was added. Then the mixture was reacted at four-dimensional rotator at room temperature for 12 h. Hereafter, the azide modified-MMs were enriched via magnetic separation and first washed 2 times with water followed by 2 times washes with methanol, respectively. The azide modified-MMs were collected and used for the subsequent steps. Alkynyl-modified baicalin probe (31.88 mg, 66  $\mu$ M) and azide modified-MMs (30 mg, 5 mg/mL) was dissolved in degassed methanol (1 mL) and treated with 100  $\mu$ L aqueous solution containing 200  $\mu$ M Tris-triazoleamine, 100  $\mu$ M CuSO4 and 200  $\mu$ M sodium ascorbate. The reaction mixture was shaken at room temperature for 12 h. Then, the baicalin-modified functionalized MMs were separated with a magnet and washed with methanol and water for 2 times respectively. The enriched functionalized-MMs were reduced by dithiothreitol (DTT) and the released baicalin derivative was analyzed by UPLC/Q-TOF-MS/MS (Waters, USA). The details of baicalin-modified functionalized MMs were shown in the Figure S4 and Figure S5.

#### Baicalin-modified functionalized MMs characterization section



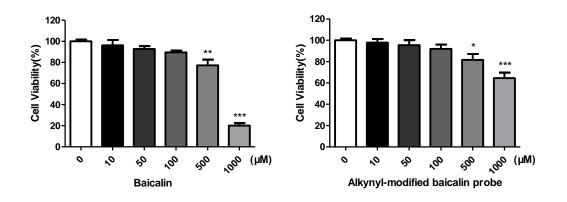

**Figure S4.** Synthetic route for baicalin-modified functionalized MMs (compound 6). Reagents and conditions: (a) NH<sub>2</sub>-MMs, borate buffer, DMSO; (b) CuSO<sub>4</sub>, VC, methanol; (c) DTT, methanol.

compound 7



UPLC/Q-TOF-MS/MS: m/z **compound 7** calculated for  $C_{30}H_{26}N_4O_{10}S$ : 634.1370; found: [M+H<sup>+</sup>] 645.1486 (Figure S5). The results of UPLC/Q-TOF-MS/MS demonstrated that baicalin was successfully modified on the surfaces of MMs.




**Figure S5.** UPLC/Q-TOF-MS/MS analysis of the solution of baicain-modified functionalized MMs after DTT reduction.

# MTT assay

HepG-2 cells were plated in 96-well plates with 200  $\mu$ L of pre-warmed medium per

well. After adherence, cells were switched to regular medium containing 0-100  $\mu$ M of baicalin or the alkynyl-modified baicalin probe for 24 h. After the treatment, the cells were incubated with 200  $\mu$ L of regular medium with 100  $\mu$ g MTT (BBI Life Sciences) for 4 h. Finally, the purple precipitates were dissolved in150  $\mu$ L of DMSO (Sigma-Aldrich) for measurement of absorbance at 490 nm by a microplate reader (Bio-Tek).

All the drugs are dissolved in DMSO before dilution. Each bar represents mean  $\pm$  SD. \*\*\*P<0.001, \*\*P<0.01 and \*P<0.05 vs the untreated group, (n=3)



**Figure S6.** The effect of baicalin and alkynyl-modified baicalin probe on the cell viability of HepG 2 cells

| Entry name  | Protein names                                              | Gene names              | Length |
|-------------|------------------------------------------------------------|-------------------------|--------|
| G6PI_HUMAN  | Glucose-6-phosphate isomerase                              | GPI                     | 558    |
| RASH_HUMAN  | GTPase Hras                                                | HRAS HRAS1              | 189    |
| GSTT2_HUMAN | Glutathione S-transferase theta-2B                         | GSTT2B GSTT2            | 244    |
| F261_RAT    | 6-phosphofructo-2-kinase/fructose-2,6-<br>bisphosphatase 1 | Pfkfb1                  | 471    |
| PCKGC_HUMAN | Phosphoenolpyruvate carboxykinase, cytosolic               | PCK1 PEPCK1             | 622    |
| KTHY_HUMAN  | Thymidylate kinase                                         | DTYMK CDC8 ТМРК<br>ТҮМК | 212    |
| RAB9A_HUMAN | Ras-related protein Rab-9A                                 | RAB9A RAB9              | 201    |
| IF4E_HUMAN  | Eukaryotic translation initiation factor 4E                | EIF4E EIF4EL1 EIF4F     | 217    |
| ELNE_HUMAN  | Neutrophil elastase                                        | ELANE ELA2              | 267    |
| BTK_HUMAN   | Tyrosine-protein kinase BTK                                | BTK AGMX1 ATK BPK       | 659    |
| CBS_HUMAN   | Cystathionine beta-synthase                                | CBS                     | 551    |

**Table S1** The top 30 target proteins (based on the fit value) predicted by Pharm-Mapper

| FGF1_HUMAN  | Fibroblast growth factor 1                     | FGF1 FGFA                        | 155  |
|-------------|------------------------------------------------|----------------------------------|------|
| MAP2_HUMAN  | Methionine aminopeptidase 2                    | METAP2 MNPEP<br>P67EIF2          | 478  |
| AKT1_HUMAN  | RAC-alpha serine/threonine-protein kinase      | AKT1 PKB RAC                     | 480  |
| GSTP1_HUMAN | Glutathione S-transferase P                    | GSTP1 FAEES3 GST3                | 210  |
| MK12_HUMAN  | Mitogen-activated protein kinase 12            | MAPK12 ERK6<br>SAPK3             | 367  |
| CDK7_HUMAN  | Cyclin-dependent kinase 7                      | CDK7 CAK CAK1<br>CDKN7 MO15 STK1 | 346  |
| UCK2_HUMAN  | Uridine-cytidine kinase 2                      | UCK2 UMPK                        | 261  |
| IMDH2_HUMAN | Inosine-5'-monophosphate dehydrogenase 2       | IMPDH2 IMPD2                     | 514  |
| FA7_HUMAN   | Coagulation factor VII                         | F7                               | 466  |
| SRC_HUMAN   | Proto-oncogene tyrosine-protein kinase Src     | SRC SRC1                         | 536  |
| CP2C9_HUMAN | Cytochrome P450 2C9                            | CYP2C9 CYP2C10                   | 490  |
| ACE_HUMAN   | Angiotensin-converting enzyme                  | ACE DCP DCP1                     | 1306 |
| RAP2A_HUMAN | Ras-related protein Rap-2a                     | RAP2A                            | 183  |
| GSK3B_HUMAN | Glycogen synthase kinase-3 beta                | GSK3B                            | 420  |
| CBR1_HUMAN  | Carbonyl reductase                             | CBR1 CBR CRN<br>SDR21C1          | 277  |
| HS90A_HUMAN | Heat shock protein HSP 90-alpha                | HSP90AA1 HSP90A<br>HSPC1 HSPCA   | 732  |
| PTN1_HUMAN  | Tyrosine-protein phosphatase non-receptor type | PTPN1 PTP1B                      | 435  |
| INSR_HUMAN  | Insulin receptor                               | INSR                             | 1382 |
| CDK2_HUMAN  | Cyclin-dependent kinase 2                      | CDK2 CDKN2                       | 298  |
|             |                                                |                                  |      |

Source: PharMmapper

# **Table S2** The top five pathways (based on the q value) were selected by String 10

| pathway ID | pathway description        | count in gene set | false discovery rate |
|------------|----------------------------|-------------------|----------------------|
| 4910       | Insulin signaling pathway  | 7                 | 2.05E-07             |
| 4151       | PI3K-Akt signaling pathway | 8                 | 2.99E-06             |

| 4917 | Prolactin signaling pathway | 5 | 4.81E-06 |  |
|------|-----------------------------|---|----------|--|
| 5215 | Prostate cancer             | 5 | 1.04E-05 |  |
| 4015 | Rap1 signaling pathway      | 6 | 2.55E-05 |  |

Source: String 10