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Abstract1

Change points appear in various types of environmental data—from univariate time2

series to multivariate data structures—and need to be accounted for in proper analysis3

and inference. The analysis of change points is challenging when no exact information4

about their number and locations is available, and statistical tests developed under such5

conditions often have low power identifying the change points. This paper provides a6

powerful, data-driven procedure for detecting at-most-m change points in linear re-7

gression models by adapting a sieve bootstrap approach for a modified cumulative sum8

statistic. The new procedure does not assume a particular dependence structure nor a9

particular distribution of regression residuals. It employs a data-driven selection of the10

order of an autoregressive model and a robust estimation of the model coefficients. Our11

simulation studies show a competitive performance of the new bootstrap-based proce-12

dure compared with its asymptotic counterpart. We apply the new testing procedure13

to address an important environmental problem in Chesapeake Bay—severe oxygen14

depletion—and detect two change points in the relationship between the volume of15

low-oxygen waters and nutrient inputs to the bay during 1985–2017.16
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1 Introduction19

It is difficult to underestimate the influence of change points on the results of statistical analy-20

sis because change points may affect the structural stability of regression models, conclusions21

about shapes and significance of temporal trends, and other inferences. The complexity of22

change point detection problems ranges from the task of testing one or several specific change23

points to completely relaxing the assumptions about the number and locations (i.e., the time24

of change) of possible change points in a given sample. There is an increasing interest in25

methods targeting the latter, less structured problems, because the rampant expansion of26

available datasets, complexity of analyses, and growing computing power demand and allow27

for development of powerful data-driven solutions.28

Change point techniques have been applied in freshwater and marine ecosystems to quan-29

tify the timing of ‘regime shifts’. Regime shifts have been identified as the abrupt and30

dramatic alternation between different steady states, which can include shifts from benthic31

to pelagic-dominated states in lakes associated with nutrient loading (Scheffer and Jeppe-32

sen, 2007) or food-web shifts driven by switches between large-scale climate cycles (Hare33

and Mantua, 2000). Regime shifts, given their abrupt nature, are often associated with the34

crossing of an environmental threshold, and techniques have been articulated to identify35

thresholds in coastal ecosystems (Andersen et al, 2009). In Chesapeake Bay, such threshold36

techniques have indicated regime shifts associated with changes to nutrient cycling associated37

with eutrophication-induced oxygen, O2, depletion (Testa and Kemp, 2012).38

Oxygen depletion, and the associated development of hypoxia (O2 concentration <39

2 mg/L) and anoxia (oxygen absent), is a primary societal concern in many aquatic ecosys-40

tems, such as lakes, estuaries, and the open ocean (Kemp et al, 2009; Scavia et al, 2014;41
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Breitburg et al, 2018). In Chesapeake Bay, the largest estuary in the United States, large42

hypoxic and anoxic volumes develop each summer and have been associated with food web43

disruptions and altered biogeochemical cycling (Kemp et al, 2009; Sturdivant et al, 2013).44

As a consequence, large socio-economic commitments have been made to relieve hypoxic45

conditions via the reduction of watershed nutrients that stimulate algal biomass produc-46

tion and subsequent oxygen depletion via respiration. Given these commitments, there is a47

continuing need for new understanding of the temporal variations in low-oxygen volumes in48

response to biological, chemical, and physical controls.49

Early approaches to the problem of changing parameters in time-dependent linear regres-50

sion have used a likelihood ratio test (Quandt, 1958, 1960), theory of Markov processes (e.g.,51

Vaman, 1985), and Bayes-type statistics (Jandhyala and MacNeill, 1989, 1991). Most of52

the recent studies, however, are based on cumulative sum (CUSUM) statistics calculated on53

regression residuals (e.g., see Horváth et al, 2004; Aue et al, 2006; Gombay, 2010; Horváth54

et al, 2017); see more references in the reviews by Jandhyala et al (1999), Reeves et al55

(2007), and Horváth and Rice (2014). Motivated by the applied questions from our Chesa-56

peake Bay study, we favored the flexible framework of Horváth et al (2017) for detecting57

at-most-m change points in a linear regression model with potentially autocorrelated errors.58

The results by Horváth et al (2017), however, involve kernel-based estimation of the long-59

run variance function—an approach that can be sensitive to dominantly positive or negative60

autocorrelations. In practice, the estimation also requires selecting a kernel function and61

optimal bandwidth. Also, the general problem of CUSUM-based test statistics is their slow62

convergence to an asymptotic distribution with the increase of sample size (e.g., see Gombay,63

2010).64

To overcome the problem of estimating the long-run variance function and to enhance65

the performance of the test in small samples, we propose to use a non-parametric sieve66

bootstrap approach for the modified CUSUM statistic. Bootstrap approaches have been67

used for CUSUM statistics before (Kirch, 2006, 2007; Chatterjee and Qiu, 2009; Gandy68

3



and Kvaløy, 2013; Zhao and Driscoll, 2016), as well as in other approaches to change point69

detection (e.g., see Antoch et al, 1995; Gombay and Horváth, 1999; Kirch, 2007; Hušková and70

Kirch, 2008; Seijo and Sen, 2011; Hlávka et al, 2016). However, to the best of our knowledge,71

this is the first time the bootstrap is applied to a CUSUM statistic for detecting at-most-m72

change points in linear regression coefficients (we describe how our approach relates to other73

methods in more detail in Section 2.1, after introducing the testing procedure). We apply74

robust estimation of autoregressive coefficients (Hall and Van Keilegom, 2003) and automatic75

selection of the autoregressive order based on the Bayesian information criterion to make76

the testing procedure fully data-driven and convenient for fast implementation by the user.77

We show that the new bootstrapped procedure maintains the size of the test similar to its78

asymptotic counterpart, but has higher power in detecting the changes. Finally, we describe79

several techniques for pre-selecting locations of change points in real data and compare the80

techniques in a case study.81

The remainder of the article is organized as follows. Section 2 presents our data-driven82

testing technique. Section 3 demonstrates the performance of the method in finite simulated83

samples. In Section 4, the method is applied to a long-term study of low-oxygen waters in84

Chesapeake Bay. Concluding remarks are given in Section 5.85

2 Methods86

We are interested in detecting and testing for changes in coefficients in a time-dependent87

linear regression model88

Yt = Xtβt + εt, (1)89

where t = 1, . . . , T ; T is the sample size (i.e., length of the time series); Yt is the dependent90

variable, Xt is the design matrix with d regressors; βt is a vector of regression coefficients,91
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and εt are regression errors:92

Yt =



y1

y2

...

yT


, Xt =



x10 x11 . . . x1d

x20 x21 . . . x2d

...
...

. . .
...

xT0 xT1 . . . xTd


, βt =



β0t

β1t

...

βdt


, εt =



ε1

ε2

...

εT


,93

and xt0 = 1 for all t. The changes in coefficients shall be reflected in the series of residuals94

ε̂t = Yt −Xtβ̂t, (2)95

where β̂t are estimated using the method of ordinary least squares (OLS). We assume possible96

autoregressive dependence in the errors (under which the OLS estimates are still unbiased;97

see Lee and Lund, 2004 and references therein on asymptotic efficiency of the OLS estimates98

under common cases of autocorrelated regression errors), such as:99

εt =

p∑
i=1

φiεt−i + vt, (3)100

where vt ∼ WN(0, σ2); φ(λ) = 1 − φ1λ − . . . − φpλ
p 6= 0, ∀|λ| 6 1; φi are autoregressive101

coefficients, and p is the autoregressive order.102

2.1 The testing procedure103

Our testing procedure is based on the flexible framework for detecting at-most-m changes,104

by Horváth et al (2017):105

H0 : β1 = β2 = . . . = βT

Ha : β(j) 6= β(l) for some 1 6 j, l 6 m+ 1,

(4)106
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where β(i) (i = 1, . . . ,m + 1) are regression coefficients in the ith subperiod; k1, . . . , km are107

the locations of m change points (1 6 k1 6 k2 6 · · · 6 km < T ); ki−1 < t 6 ki (k0 = 0 and108

km+1 = T ). The H0 of no changes in the coefficients is rejected in all cases from at least one109

change point to at most m change points being present, where the m change point locations110

are specified before applying the test.111

To test the null hypothesis, compute the modified CUSUM112

M(k1, . . . , km) = |M1(k1)|+ |M2(k1, k2)|+ . . .+ |Mm(km−1, km)|+ |Mm+1(km)|, (5)113

where114

M1(k1) =
1√
k1

(
k1∑
t=1

ε̂t −
k1

T

T∑
t=1

ε̂t

)
,115

Mi(ki−1, ki) =
1√
T

 ki∑
t=ki−1+1

ε̂t −
ki − ki−1

T

T∑
t=1

ε̂t

 , 2 6 i 6 m,116

Mm+1(km) =
1√

T − km

(
T∑

km+1

ε̂t −
T − km
T

T∑
t=1

ε̂t

)
.117

118

Then, obtain the statistic119

MT = max
M

M(k1, . . . , km), where M = {1 6 k1 6 k2 6 · · · 6 km < T}. (6)120

The statistic MT is the maximum of statistics M calculated over all combinations of one to121

m change points k1, . . . , km in M. For example, for given m = 3 and respective change point122

locations M = {1 6 k1 6 k2 6 k3 < T}, the seven possible combinations of the change point123

locations are explored:124

M∗ = {(k1), (k2), (k3), (k1, k2), (k1, k3), (k2, k3), (k1, k2, k3)},125

MT = max{M(M∗
1), . . . ,M(M∗

7)},126
127
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and the final change point locations are those corresponding to the MT :128

arg max
M∗
{M(M∗

1), . . . ,M(M∗
7)}.129

The assumptions for the test include stationarity of xt and εt and that the sequence is a130

Bernoulli shift, which can be approximated with finitely dependent time series (see Horváth131

et al, 2017 for more details).132

Remark 1 An alternative to trying all combinations of change points in M∗ could be an133

approach utilizing penalized likelihood, such as Akaike information criterion (AIC), Bayesian134

information criterion (BIC), or risk inflation criterion (RIC); see Stine (2004) and references135

therein for a comparative assessment of these criteria in variable selection. The approach136

using criterion-based stepwise elimination of terms, starting from the total of m + 1 terms137

(one for each subperiod), may be faster than using the M∗, however, both of these ap-138

proaches require the candidate change point locations k1, . . . , km to start with. If k1, . . . , km139

are unknown, they can be pre-selected from the data, which usually constitutes a more com-140

putationally demanding task (see Section 2.2) than exploring the combinations of m terms141

in M∗.142

Here we propose to replace the asymptotic approximations based on the long-run variance143

function with a data-driven bootstrap approach for approximating the distribution of MT144

under the null hypothesis and calculating bootstrap-based p-values. Our modified testing145

procedure consists of the following steps:146

1. Calculate the observed statistic (6), M
(obs)
T , based on ε̂t.147

2. Select autoregressive order p using a data-driven information criterion, such as BIC,148

and get the estimates φ̂1, . . . , φ̂p in (3). Similarly to Lyubchich and Gel (2016), here149

we employ the robust difference-based estimator of autocorrelation functions by Hall150

and Van Keilegom (2003) within the Yule–Walker equations to get the estimates of the151
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autoregressive coefficients.152

3. Calculate the residuals v̂t in (3). If the optimal autoregressive order selected at the153

previous step is zero, let v̂t = ε̂t.154

4. Let v̂∗t be a sample with replacement (i.e., bootstrap sample) from v̂t. Alternatively,155

v̂∗t can be generated from a kernel smoothing of the v̂t.156

5. Generate a new autoregressive series ε̂∗t using the estimated coefficients φ̂1, . . . , φ̂p and157

innovations v̂∗t .158

6. Calculate the bootstrapped statistic (6), M
(∗1)
T , based on ε̂∗t .159

7. Repeat steps 4–6 a large number of times to get a distribution of bootstrapped statistics160 {
M

(∗b)
T

}B
b=1

, where B is the total number of bootstrap repetitions.161

8. The bootstrap p-value for testing (4) is the proportion of
{
M

(∗b)
T

}B
b=1

that exceed162

M
(obs)
T .163

An implementation of the above procedure is available from mcusum.test function in R164

package funtimes (Lyubchich and Gel, 2019).165

Remark 2 Consider a simple linear regression without intercept term, which is a reduced166

version of model (1):167

yt = βtxt + εt.168

The coefficient βt is estimated using OLS as a weighted ratio of yt/xt:169

β̂t =

∑T
t=1 xtyt∑T
t=1 x

2
t

=

∑T
t=1 x

2
t
yt
xt∑T

t=1 x
2
t

,170

where x2
t (t = 1, . . . , T ) are the weights. When the weights are almost equal and are not171

zero, the non-weighted average ratio, T−1
∑T

t=1(yt/xt), can serve as an intuitive estimate of172
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βt. Therefore, the task of detecting changes in βt can be performed using the series yt/xt173

instead of ε̂t.174

Relevance to other methods Without the goal of providing a comprehensive review on175

the topic of change point analysis, here we outline how our testing procedure is positioned176

among other methods in the field.177

Our procedure is developed for linear parametric regression models with stationary er-178

rors. For results on change point detection in non-linear models, we refer to Aue et al (2008),179

Jandhyala and Al-Saleh (1999), Jandhyala et al (1999), and references therein. Other ap-180

proaches examine cases of non-stationarity, such as periodicity, stochastic and deterministic181

trends in regressors (Bai et al, 1998; Hanson, 2002; Lund et al, 2007; Kejriwal and Perron,182

2008; Gallagher et al, 2013), changes in persistence, and heteroscedasticity (Busetti and183

Taylor, 2004; Cavaliere and Taylor, 2008; Górecki et al, 2018).184

Our test is more general than a number of previously developed procedures for testing185

at-most-one change (AMOC; for example, see Quandt, 1960; Gombay and Horváth, 1999;186

Jandhyala et al, 1999; Jarušková, 2003; Kirch, 2006, 2007; Reeves et al, 2007; Aue et al,187

2008, and references therein), but it shares the common property of decreasing power when188

a change point moves away from the center of a time series.189

One of the inputs used by our testing procedure is the suggested set of change point190

locations k1, . . . , km for which the test is applied. The locations can be given beforehand191

(the so-called case of ‘documented’ change points), but in many applications both the number192

of change points and their locations need to be determined from the analysis. An exhaustive193

search over all possible positions of m change points in a sample is feasible only when m194

and sample size T are small, because of the heavy computational burden. We apply phase195

analysis, regression trees, and alternating conditional expectations to locate possible change196

points. Other available approaches use the principle of dynamic programming (see Zeileis197

et al, 2003; Antoch and Jarušková, 2013, and references therein) and genetic algorithms198
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(e.g., Li and Lund, 2012) to find a solution optimizing some likelihood function, which is199

usually the residual sum of squares, AIC, or BIC. Li and Lund (2015) and Li et al (2017)200

use Bayesian techniques to account for partial information about change points documented201

in metadata. A separate group of testing approaches that often do not require to set the202

upper limit m for the number of change points are developed for monitoring tasks (e.g., see203

Horváth et al, 2004; Aue et al, 2006; Eichinger and Kirch, 2018).204

The residuals v̂t calculated at Step 3 of our procedure are the differences between the po-205

tentially autocorrelated observed values ε̂t and the one-step-ahead predictions obtained using206

the autoregressive model (3). That is, v̂t are one-step-ahead prediction residuals. Robbins207

et al (2011) provide a summary of using such residuals in CUSUM methods when consider-208

ing a problem of detecting a single mean shift in an autoregressive moving average (ARMA)209

process. Robbins et al (2011) note that under certain regularity conditions the CUSUM-210

based inferences are asymptotically the same, whether based on the raw ARMA series or the211

uncorrelated one-step-ahead prediction residuals. In our sieve bootstrap approach, however,212

the bootstrap counterparts of residuals v̂t are plugged back into the autoregressive model to213

generate new autoregressive series ε̂∗t .214

Our bootstrap procedure is most similar to Hušková et al (2008) and Hušková and Kirch215

(2012) who apply two types of bootstrapping while considering change points in coefficients216

of autoregressive models and sequential change point testing in linear models. In the paired217

bootstrap, the resampling of paired yt and xt (Hušková and Kirch, 2012) or of paired yt and218

regression residuals ẽt (Hušková et al, 2008) is performed. In the regression bootstrap, just219

the residuals are bootstrapped. The difference is that the residuals ẽt are defined after a220

hypothesized change point has been incorporated into the regression model (cf. the residuals221

(2) that are estimated without assuming a change point). Hušková and Kirch (2012) note222

that their procedure is most suitable for independent and identically distributed (i.i.d.)223

vectors, and point in the direction of block bootstrap for dependent series.224

Thus, our method stands out by automatically accommodating possible serial depen-225
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dence, using the version of sieve bootstrap. We also bypass standardization of the test226

statistic with a long-run variance estimate. Such an estimate is used, for example, in the227

V (3) version of the test statistic by Horváth et al (2017), but can lead to a number of com-228

plications in analysis of real data, especially when the sample size is small (see more details229

in Horváth et al, 2017; Eichinger and Kirch, 2018).230

2.2 Identifying candidate change points231

There are a number of ways we can select the candidate change points k1, k2, . . . , km for232

applying the testing procedure. For example, we might consider metadata, expert opinions,233

or perform a quantitative and exhaustive search over all combinations. The exhaustive search234

over all possible locations will require calculating the value in (5) KT,m =
∑m

i=1
(T−1)!

i!(T−1−i)!235

times, which is still computationally feasible for small T and m, but is impractical for larger236

problems. For example, K33,3 = 5,488 possible locations can be explored in our case study237

(Section 4), but there are too many possible change point locations for larger T and m238

(K100,3 = 161,799; K100,5 = 75,449,319, etc.). Below we present several other methods for239

identifying the change points.240

Phase analysis The main idea of the method of phase analysis is iterative cleaning of a241

time series from low-power (random) fluctuations. Phases are periods of positive or negative242

fluctuations (Lukashin, 2003)—similar to runs in the test for time series randomness. In the243

filtering process, the phases are aggregated to incorporate or smooth out smaller phases.244

The fluctuations can be computed as deviations of time series from the mean, previous245

values (i.e., as consecutive differences), zero or some other target value, or the temporal246

trend. In this application to the problem of studying changes in regression coefficients, we247

define fluctuations as the regression residuals ε̂t.248

Let pi =
∑li

t=li−1+1 |ε̂t| be the power of ith phase that includes time points from li−1 + 1249

to li, where l0 = 0. Thus, the overall power is P =
∑

i pi. The phase analysis is performed250

11



in the following steps:251

1. Set a stopping criterion for the aggregation process. This could be, for example, percent252

of the total power we choose to lose during the aggregation, or pre-defined number or253

average length of final phases.254

2. Find the least powerful phase255

j = arg min
i
pi256

and aggregate it with its neighboring phase(s). If the jth phase is located not at the257

beginning or at the end of the time series, replace the three phases, (j− 1)th, jth, and258

(j+1)th, with one phase which power is pj−1−pj +pj+1. Hence, the number of phases259

decreases by two, while the power P decreases by 2pj. If the least powerful phase is260

the first (or the last) in the sequence, join it only with the one after, (j + 1)th (or the261

one before, (j − 1)th).262

3. Repeat the previous step until the stopping criterion is met.263

The time points l1, l2, . . . at which the final phases end (except the ending time of the264

last phase, which is T ) can serve as an approximation for the change points to be tested.265

CART Classification and regression trees (CART; Breiman et al, 1984) is a machine learn-266

ing method that aims to learn a sequence of splitting rules that can split the observations267

of a response variable into relatively small homogeneous groups of observations, using asso-268

ciated values of predictors (also termed as splitting variables). When the response variable269

is numeric, the heterogeneity is quantified by the response within-group sum of squares.270

For our task of identifying locations of possible change points, we set ε̂t as the response,271

and use time index t = 1, . . . , T as the splitting variable. In this case, CART solutions272

identify periods of distinctively homogeneous ε̂t.273

The algorithm proceeds starting with the whole data set of size T (Hastie et al, 2009):274
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1. Using an exhaustive search over all available t, select a value s that separates the275

response into two groups, R1(s) and R2(s), by solving276

min
s

 ∑
t∈R1(s)

(ε̂t − ĉ1)2 +
∑

t∈R2(s)

(ε̂t − ĉ2)2

 ,277

where ĉ1 and ĉ2 are average values of ε̂t within the subperiods R1(s) and R2(s), re-278

spectively.279

2. Repeat Step 1 on each of the two regions, R1(s) and R2(s).280

3. Repeat Step 1 on all of the resulting regions until a stopping criterion is met.281

Growing big trees with many splits can reduce the in-sample errors drastically (perfect282

goodness-of-fit), however, such ‘deep’ trees are unstable (adding or removing few observa-283

tions may change the tree dramatically) and hard to interpret. Hence, a number of tuning284

parameters are used to define conditions when the next split should be attempted. Such pa-285

rameters (e.g., minimal number of observations per group, minbucket, and maximal depth286

of the final tree, maxdepth) protect against over-fitting the data, but their values should287

be chosen adaptively from the data. Hastie et al (2009) propose a cost-complexity pruning288

technique that is based on growing a big tree until reaching, for example, some minimal node289

size. Then, the cost complexity criterion Cλ(Θ) is applied to prune the tree:290

Cλ(Θ) =

|Θ|∑
i=1

NiQi(Θ) + λ|Θ|, (7)291

where |Θ| is the number of terminal nodes in tree Θ; Ni is the number of observations in ith292

terminal node Ri (i.e., Ni is the node size); Qi(Θ) = N−1
i

∑
t∈Ri

(ε̂t− ĉi)2 is the heterogeneity293

of ith node, and λ > 0 is the penalty parameter for the tradeoff between tree goodness-of-fit294

and complexity. Overall, (7) resembles the form of penalized regression estimators, such as295

the least absolute shrinkage and selection operator (LASSO), and, similarly, Hastie et al296
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(2009) suggest to select the optimal value of λ using a ten-fold cross-validation.297

ACE Alternating conditional expectations (ACE; Breiman and Friedman, 1985) is an opti-298

mization procedure for suggesting smooth non-parametric transformations of regressors (and299

response) to maximize the proportion of explained variation.300

Similar to CART, ACE can be employed to find breakpoints in regression residuals ε̂t301

using the sequence t = 1, . . . , T as the predictor. The transformations f̂(·) are chosen in the302

process of minimizing E {ε̂t − f(t)}2 . Unlike phase analysis or CART, ACE do not provide303

clearly defined change point locations, and an additional step should be taken for inferring304

the candidate change points from ACE transformations (for example, using visual analysis305

of a plot of f̂(t) against t—see Soliman et al, 2015 and Lyubchich and Gel, 2017).306

3 Simulation experiments307

We apply the new sieve bootstrap-based testing procedure (Section 2.1) in a series of simula-308

tion experiments similar to of Horváth et al (2017). In particular, we simulate three types of309

error processes and incorporate them in two models for the change points (Model I with one310

change point and Model II with two change points) with varying size of the change, δ. We311

use the nominal significance level α = 0.05, number of bootstrap replications B = 1000, and312

5000 Monte Carlo runs for each combination. We use sample sizes T = 100 and 400 same313

as Horváth et al (2017), and additionally use T = 30 as it is close to the sample size in our314

case study (Section 4). The proportion of Monte Carlo runs when the null hypothesis (4)315

is rejected represents the empirical size of the test when δ = 0, and power of the test when316

δ 6= 0 (for both Model I and Model II).317

Model I Assume m = 1 and318

Yt =


Xtβ

(1) + εt, if 1 6 t 6 k∗1,

Xtβ
(2) + εt, if k∗1 + 1 6 t 6 T,

319
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where β(1) = (0, 1)>, β(2) = (0, 1 + δ)>; δ = −2,−1.8, . . . , 1.8, 2. Thus, Model I is a simple320

linear regression through the origin, with a change δ added to its only parameter after time321

k∗1. With k∗1 = bTθc and θ = {0.2, 0.5, 0.9}, the cases of the change early, in the middle, and322

late are considered.323

Model II Assume m = 2 and324

Yt =


Xtβ

(1) + εt, if 1 6 t 6 k∗1,

Xtβ
(2) + εt, if k∗1 + 1 6 t 6 k∗2,

Xtβ
(3) + εt, if k∗2 + 1 6 t 6 T,

325

where β(1) = (0, 1)>, β(2) = (0, 1 + δ)>, β(3) = (0, 1 − 2δ)>; δ = −3,−2.8, . . . , 2.8, 3 (i.e.,326

the definition of β(3) and granularity of δ are different from Horváth et al, 2017). The327

change points k∗1 = bTθ1c and k∗2 = bTθ2c are set to split the series into equal periods with328

(θ1, θ2) = (1/3, 2/3) or unequal, with (θ1, θ2) = (0.2, 0.5) and (θ1, θ2) = (0.5, 0.9).329

In both models, Xt = (1, xt1), where xt1 are i.i.d. N(1, 1) random variables. The regres-330

sion errors, εt, are obtained from the following three processes:331

1. Independent standard normal: εt are i.i.d. N(0, 1);332

2. GARCH(1,1): εt = σtut, σ
2
t = 0.25 + 0.25ε2

t−1 + 0.5σ2
t−1, where ut are i.i.d. N(0, 1);333

3. AR(1): εt = 0.5εt−1 + ut, where ut are i.i.d. N(0, 1).334

Table 1 shows the empirical size of the new bootstrapped testing procedure when one335

or two change points (in Model I and Model II, respectively) split the series into equal336

parts1. When the error process is i.i.d. N(0, 1), the results are the most satisfactory as the337

observed rejection probabilities are close to the nominal α = 0.05 even for small samples338

of size T = 30. With GARCH(1,1) errors and small sample size, the empirical size of the339

test is slightly higher than it should be under α = 0.05, however, it quickly approaches the340

1The results for other θ’s—i.e., θ = 0.2 and θ = 0.9 in Model I and (θ1, θ2) = (0.2, 0.5) and (θ1, θ2) =
(0.5, 0.9) in Model II—differ trivially from those shown in Table 1 (see Figures 1 and 2 when δ = 0).
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nominal level as the sample size increases (e.g., the size of the test under Model I is 0.059 for341

T = 30, and 0.049 for T = 400). With autoregressive dependence in the regression errors, as342

the sample size T increases, the empirical size of the test approaches the nominal α slower343

than in the uncorrelated case (see the last column of Table 1).344

Overall, Table 1 shows that the performance of the data-driven bootstrapped procedure345

matches the parametric approach of Horváth et al (2017). It also shows that our non-346

parametric bootstrap approach can be implemented for small T when the regression errors347

are uncorrelated.348

Figures 1 and 2 correspond to Model I and Model II and show the power of the new349

testing procedure when the change δ 6= 0. With δ moving away from zero, the power of the350

test quickly approaches 1 (i.e., 100%), especially in large samples of T = 100 and T = 400.351

This growth of power is faster when the simulated regression errors are uncorrelated (the352

first two columns of plots in Figures 1 and 2) than when the errors are autocorrelated (the353

third column of plots in Figures 1 and 2). There is no substantial difference between the354

power curves for the i.i.d. N(0, 1) and GARCH(1,1) errors (i.e., between the first and second355

columns of the plots).356

By studying the curves in each of the plots, we observe that power is higher when the357

periods both before and after change points are longer—it corresponds to the cases of θ = 0.5358

and (θ1, θ2) = (1/3, 2/3) that split the series into equal parts (the cases for which the size359

of the test is presented in Table 1). In other words, it is easier to detect change points if a360

single change point appears in the middle of the series, or if several change points stand far361

apart from each other and from the beginning and the end of the series.362

Based on the power curves by Horváth et al (2017), our data-driven procedure is more363

powerful (see Figures 1d, 1e, and 1i), thus, should be preferred in real data applications.364

However, if autocorrelated regression errors are observed in a small sample, the user should365

be aware that both procedures may over-reject the null hypothesis.366
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4 Low-oxygen water in Chesapeake Bay367

The frequency and severity of low oxygen volumes (hypoxia and anoxia) have been highly368

variable in past decades and have persisted as a significant environmental problem in Chesa-369

peake Bay. Hypoxia is the dissolved oxygen concentration, often defined as < 2 mg/L, at370

which many aquatic organisms are physically stressed; while anoxia corresponds to complete371

depletion of oxygen, operationally defined as < 0.2 mg/L (Diaz and Rosenberg, 2008; Testa372

and Kemp, 2014; Wang et al, 2016). Reduced oxygen in the bottom water of the Chesa-373

peake occurs naturally due to biological processes, but the extent and severity of hypoxia374

and anoxia has increased in the past as a result of elevated nitrogen loading into the bay375

resulting from anthropogenic activities in the watershed (for example, see Kemp et al, 1992;376

Hagy et al, 2004; Kemp et al, 2005; Scully, 2010; Testa and Kemp, 2014; Li et al, 2016 and377

references therein). Various physical and statistical models have been used to study the378

dynamics of oxygen-depletion events towards a better prediction of hypoxia (and anoxia)379

and more complete understanding the bay ecosystem as a whole (Murphy et al, 2011; Zhou380

et al, 2014). Although some relationships between hypoxia and its controlling variables are381

linear in nature, Conley et al (2009) considered regime shifts associated with the degradation382

of ecosystem buffers when hypoxic events are particularly severe, allowing the ecosystem to383

become more susceptible to future hypoxic events. Hagy et al (2004) and Testa and Kemp384

(2012) illustrated how Chesapeake Bay may have become more susceptible to nitrogen inputs385

over the period of 1950–2010. In the most recent four decades, sufficiently resolved oxygen386

measurements over space and time allow for more detailed statistical analyses of changes in387

Chesapeake Bay hypoxia.388

Using high-quality data for the period 1985–2017 (T = 33 years), we investigate the389

relationships between anoxic events and the correlated factors in two regression models used390

to predict Chesapeake Bay early summer anoxic volumes (y1t) and late summer anoxic391

volumes (y2t) for public releases by the National Oceanic and Atmospheric Administration392
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(NOAA) of the USA2 and originally developed in Murphy et al (2011). The anoxic volumes393

are calculated using bay-wide statistical interpolation of dissolved oxygen concentrations394

sampled from the main stem of Chesapeake Bay by the Chesapeake Bay Program (Murphy395

et al, 2011; Testa and Kemp, 2012). The sampling is conducted in May through first two396

weeks of July to estimate early summer volumes, and in the second two weeks of July397

through September for the late summer volumes. The following factors were investigated as398

potentially correlated with the anoxic volumes:399

• total nitrogen load from Susquehanna and Potomac Rivers during January–April,400

JanAprTNLoadt (kg/day),401

• total nitrogen load from Susquehanna River during January–May, JanMayTNLoadt402

(kg/day),403

• freshwater discharge from Susquehanna and Potomac Rivers in May, MayFlowt404

(m3/s),405

• mean sea level, MSLt (m), and406

• fraction of hours with southeastern wind over Chesapeake Bay during March–May.407

The final regression models, obtained with step-wise model selection based on AIC and408

analysis of statistical significance of the coefficients, retain only JanAprTNLoadt as a pre-409

dictor for early summer anoxic volumes, and JanMayTNLoadt for late summer anoxic410

volumes:411

ŷ1t =− 0.980
(0.405)

+ 6.903 · 10−6

(1.069·10−6)
JanAprTNLoadt, (8)412

ŷ2t =− 0.217
(0.426)

+ 5.596 · 10−6

(1.360·10−6)
JanMayTNLoadt, (9)413

414

2E.g., see http://www.noaa.gov/media-release/noaa-usgs-and-partners-predict-larger-summe

r-dead-zone-for-chesapeake-bay and http://ian.umces.edu/ecocheck/forecast/chesapeake-bay

/2017/.
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where standard errors of the coefficients are given in parentheses. Residuals ε̂1t and ε̂2t of the415

respective models show no strong patterns or significant autocorrelations (Figure 3). Hence,416

the observed residuals are more similar to the first type of errors explored in the simulations417

in Section 3—independent normal—rather than to the GARCH or AR types. At the next418

step, we identify possible change points using the methods outlined in Section 2.2, then419

apply the data-driven testing procedure that is described in Section 2.1. All test results are420

combined in Table 2.421

We applied an exhaustive search of up to three change points (we do not expect more422

than three change points in the relatively short time series of T = 33 observations)423

k̂1, . . . , k̂m = arg max{M(k1, k2, k3), 1 6 k1 6 k2 6 k3 < T},424

and in both cases (for early and late summer anoxic volumes) two candidate change points425

were found that were further tested using the suggested sieve bootstrap approach (Table 2).426

In the phase analysis of residuals from each regression model, the phase aggregation was427

stopped to retain 50% of the total power. This gave two change points for the model of428

early summer anoxia (1992 and 2013) and one change point, at 2001, for the model of late429

summer anoxia (Table 2).430

In the CART analysis, the data can be generally split into 2maxdepth groups, and the431

value maxdepth = 2 gives us potentially up to four groups (i.e., up to three change points).432

Additionally, we set minbucket = d0.1T e = 4 , i.e., 10% of the available data, rounded433

up (the CART algorithm implementation by Therneau and Atkinson, 2018 was used in434

this analysis). The results in Figure 4 give us two change points in each case (with up435

to three possible under the current settings of the tuning parameters). Notice that based436

on the definitions in Section 2, the change points k1, . . . , km split the data set into periods437

[1, k1], [k1 + 1, k2], . . . , [km + 1, T ] (i.e., each change point is the last point in the respective438

subseries), hence, the change points from CART analysis are 1988 and 2013 for the early439
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summer anoxia model, and 2001 and 2009 for the late summer anoxia model (Figure 4).440

The obtained ACE transformations (using the algorithm by Spector et al, 2016) allowed441

us to select easily at least one change point, closer to the end of the series (i.e., the change442

point at 2012 in Figure 5a and at 2013 in Figure 5b when the rapid changes start to occur).443

While the rest of the transformed series look non-linear, it is less obvious where additional444

change points occurred. For the model of early summer anoxia, we hypothesized an addi-445

tional change point at 2002 as it is the time when f̂(Y ear) in Figure 5a start declining. The446

year of 1992 was selected as another candidate change point for late summer anoxic volume447

regression model for the same reason (Figure 5b).448

Thus, all the employed methods (exhaustive search, phase analysis, CART, and ACE)449

suggest roughly two change points in the model coefficients during the analyzed period450

(Table 2). The methods, however, sometimes disagree on where the change points are451

located. We observed a good correspondence between the exhaustive search and CART:452

CART-selected change points are the closest to exhaustive search in terms of their location453

and p-values. Hence, CART can be the preferred method for identifying change points when454

exhaustive search is not computationally feasible. The change points selected based on phase455

analysis led to the test p-value at the border of statistical significance for the early summer456

anoxia model (p-value of 0.0527). For the late summer model, the phase analysis identified457

only one change point, whereas all other methods identified two. The ACE results were458

the least consistent with other methods—the ACE-selected thresholds were located at very459

different years, what could lead to completely missing the change points in the early summer460

anoxia model (the p-value for ACE-selected change points is 0.3306, whereas CART and461

exhaustive search could identify significant change points).462

The mechanisms behind the timing of the identified change points cannot be definitively463

explained, but there are clear associations with these time points and periods of environ-464

mental change in Chesapeake Bay. The fact that the change points were slightly different for465

the two periods is not surprising, given that the temporal trend in the early and late sum-466
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mer low-oxygen volumes have been shown to be in different directions (Murphy et al, 2011).467

The ACE and exhaustive search methods generally suggest a change point in the 2013–2015468

period where the model residuals were negative, which coincides with a period of relatively469

low eutrophic conditions in Chesapeake Bay. From 2013 to 2017, Susquehanna River dis-470

charge was consistently average or low, and metrics of dissolved oxygen (Zhang et al, 2018),471

nutrient availability (Testa et al, 2018), and submerged aquatic vegetation (Orth et al, 2017)472

all indicated that eutrophication effects were weak. Thus, it appears that internal processes473

that control a wide variety of ecosystem properties were better than expected from nutri-474

ent loading from the Susquehanna, which is consistent with lower-than-predicted volumes of475

anoxia. Sampling difficulties in 2016 and 2017 may also have biased the observed volumes476

to be lower3. The CART, ACE, and exhaustive search methods also indicated a change477

point in 2001 and 2002 for anoxic volume in both periods. This time period corresponds478

with the end of a prolonged drought in the Bay watershed (1999–2002), which is associated479

with the resurgence of a large submerged aquatic vegetation bed in the upper Chesapeake480

Bay (Gurbisz and Kemp, 2014) and a landward shift in the peak winter-spring phytoplankton481

biomass from the lower to the upper Bay (Testa et al, 2018). Both of these changes would482

be expected to lead to elevated nutrient retention in the upper regions of Chesapeake Bay,483

thus reducing the fraction of watershed nitrogen load that reaches seaward waters where it484

can eventually support oxygen depletion. Future research can better resolve the mechanisms485

responsible for these change points by examining volumes of other oxygen thresholds (e.g.,486

1 mg/L) and including other forcing variables (e.g., summer wind speeds). For example,487

a preliminary analysis of the linear relationship between late summer anoxic volumes and488

wind speeds (m/s) in 1986–2015 detected two change points: 1998 and 2005. In the 1998–489

2005 period, both the level and variability of wind speeds were high, and regression analysis490

showed a significant linear relationship for these variables (ŷ2t = 9.740 − 2.401WindSpeed;491

p-value 0.033), whereas no such relationship was detected for the years outside 1998–2005.492

3https://news.maryland.gov/dnr/2017/10/26/summer-2017-hypoxia/
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Thus, this initial analysis reveals that wind speed has a potentially significant, but secondary493

impact on anoxic volume.494

5 Conclusions495

In this paper we propose a data-driven non-parametric sieve bootstrap framework for testing496

at-most-m change points in coefficients of a linear regression model. The test statistic has497

the form of modified CUSUM by Horváth et al (2017). Our simulation studies indicate that498

the new testing procedure outperforms its asymptotic approximation counterpart.499

We illustrate the new approach by applying it to the data on Chesapeake Bay ecosystem,500

where annual re-occurrence of ‘dead zones’ with extremely low concentration of oxygen in501

the water has been a long-lasting problem. Our results for 1985–2017 show two statisti-502

cally significant changes in the coefficients of simple linear regression models quantifying the503

relationships between anoxic water volumes and nitrogen loadings entering the bay.504

Possible lines of future research include providing theoretical proofs of consistency of the505

bootstrap procedure, identifying if other processes linked to anoxia in Chesapeake Bay had506

change points co-occurring with the ones identified, and expanding the testing approach to507

other types of data beyond time series.508

The code for the method is available from mcusum.test function in R package fun-509

times (Lyubchich and Gel, 2019); the data that support the findings of this study are avail-510

able from the corresponding author upon request.511
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D, Gutiérrez D, Isensee K, Jacinto GS, Limburg KE, Montes I, Naqvi SWA, Pitcher GC,539

Rabalais NN, Roman MR, Rose KA, Seibel BA, Telszewski M, Yasuhara M, Zhang J (2018)540

Declining oxygen in the global ocean and coastal waters. Science 359(6371):eaam7240,541

23



DOI 10.1126/science.aam7240542

Busetti F, Taylor AMR (2004) Tests of stationarity against a change in persistence. Journal543

of Econometrics 123(1):33–66, DOI 10.1016/j.jeconom.2003.10.028544

Cavaliere G, Taylor AMR (2008) Testing for a change in persistence in the presence of non-545

stationary volatility. Journal of Econometrics 147(1):84–98, DOI 10.1016/j.jeconom.2008546

.09.004547

Chatterjee S, Qiu P (2009) Distribution-free cumulative sum control charts using bootstrap-548

based control limits. The Annals of Applied Statistics 3(1):349–369, DOI 10.1214/08-A549

OAS197550

Conley DJ, Carstensen J, Vaquer-Sunyer R, Duarte CM (2009) Ecosystem thresholds with551

hypoxia. Hydrobiologia 629(1):21–29, DOI 10.1007/s10750-009-9764-2552

Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems.553

Science 321(5891):926–929, DOI 10.1126/science.1156401554

Eichinger B, Kirch C (2018) A mosum procedure for the estimation of multiple random555

change points. Bernoulli 24(1):526–564, DOI 10.3150/16-BEJ887556

Gallagher C, Lund RB, Robbins M (2013) Changepoint detection in climate time series with557

long-term trends. Journal of Climate 26(14):4994–5006, DOI 10.1175/JCLI-D-12-00704.1558

Gandy A, Kvaløy JT (2013) Guaranteed conditional performance of control charts via boot-559

strap methods. Scandinavian Journal of Statistics 40:647–668, DOI 10.1002/sjos.12006560

Gombay E (2010) Change detection in linear regression with time series errors. Canadian561

Journal of Statistics 38(1):65–79, DOI 10.1002/cjs.10043562
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Górecki T, Horváth L, Kokoszka P (2018) Change point detection in heteroscedastic time565

series. Econometrics and Statistics 7:63–88, DOI 10.1016/j.ecosta.2017.07.005566

Gurbisz C, Kemp WM (2014) Unexpected resurgence of a large submersed plant bed in567

Chesapeake Bay: Analysis of time series data. Limnology and Oceanography 59(2):482–568

24



494, DOI 10.4319/lo.2014.59.2.0482569

Hagy JD, Boynton WR, Keefe CW, Wood KV (2004) Hypoxia in Chesapeake Bay, 1950–570

2001: long-term change in relation to nutrient loading and river flow. Estuaries 27(4):634–571

658, DOI 10.1007/BF02907650572

Hall P, Van Keilegom I (2003) Using difference-based methods for inference in nonparamet-573

ric regression with time series errors. Journal of the Royal Statistical Society: Series B574

(Statistical Methodology) 65(2):443–456, DOI 10.1111/1467-9868.00395575

Hanson BE (2002) Tests for parameter instability in regressions with I(1) processes. Journal576

of Business & Economic Statistics 20(1):45–59, DOI 10.1198/073500102753410381577

Hare SR, Mantua NJ (2000) Empirical evidence for North Pacific regime shifts in 1977 and578

1989. Progress in Oceanography 47(2–4):103–145, DOI 10.1016/S0079-6611(00)00033-1579

Hastie TJ, Tibshirani RJ, Friedman JH (2009) The Elements of Statistical Learning: Data580

Mining, Inference, and Prediction, 2nd edn. Springer, New York, DOI 10.1007/978-0-387581

-84858-7582
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Daloğlu I, DePinto JV, Dolan DM, Evans MA, Farmer TM, Goto D, Han H, Höök TO,677
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Zeileis A, Kleiber C, Krämer W, Hornik K (2003) Testing and dating of structural changes717

in practice. Computational Statistics & Data Analysis 44(1-2):109–123, DOI 10.1016/S01718

67-9473(03)00030-6719

Zhang Q, Murphy RR, Tian R, Forsyth MK, Trentacoste EM, Keisman J, Tango PJ (2018)720

Chesapeake Bay’s water quality condition has been recovering: Insights from a multimet-721

ric indicator assessment of thirty years of tidal monitoring data. Science of The Total722

Environment 637:1617–1625, DOI 10.1016/j.scitotenv.2018.05.025723

Zhao MJ, Driscoll AR (2016) The c-chart with bootstrap adjusted control limits to improve724

conditional performance. Quality and Reliability Engineering International 32(8):2871–725

2881, DOI 10.1002/qre.1971726

Zhou Y, Scavia D, Michalak AM (2014) Nutrient loading and meteorological conditions ex-727

plain interannual variability of hypoxia in Chesapeake Bay. Limnology and Oceanography728

59(2):373–384, DOI 10.4319/lo.2014.59.2.0373729

30

https://CRAN.R-project.org/package=rpart


Table 1: Empirical size (in both models, δ = 0) of the bootstrapped test under different
specifications of the models and error processes

Error process εt
Model T i.i.d. N(0, 1) GARCH(1,1) AR(1)
Model I, m = 1 and θ = 0.5 30 0.049 0.059 0.185

100 0.057 0.055 0.075
400 0.056 0.049 0.059

Model II, m = 2 and (θ1, θ2) = (1/3, 2/3) 30 0.051 0.063 0.219
100 0.053 0.052 0.083
400 0.053 0.052 0.062
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Table 2: Results of identifying and testing (B = 104) for change points in regression coeffi-
cients of the regression models for anoxic volumes in Chesapeake Bay

Regression Method of Change points Bootstrapped

model selecting change points k̂1, . . . , k̂m p-value
Early summer (8) Exhaustive search 1987, 2014 0.0039

Phase analysis 1992, 2013 0.0527
CART 1988, 2013 0.0238
ACE 2002, 2012 0.3306

Late summer (9) Exhaustive search 2001, 2015 0.0017
Phase analysis 2001 0.0125
CART 2001, 2009 0.0077
ACE 1992, 2013 0.0078
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Figure 1: The empirical power functions of the bootstrapped test for testing the null hypoth-
esis of at-most-one change point at k∗1 = bTθc, when the data are simulated using Model I.
Grey lines in (d), (e), and (i) correspond to V (3) curves from respective Figures 4, 5, and 6
of Horváth et al (2017).
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Figure 2: The empirical power functions of the bootstrapped test for testing the null hy-
pothesis of at-most-two change points at k∗1 = bTθ1c and k∗2 = bTθ2c, when the data are
simulated using Model II.
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Figure 3: Regression models of anoxic volumes in Chesapeake Bay: a) anoxic volumes in
early summer and fitted with (8); d) anoxic volumes in late summer and fitted with (9);
b) and e) respective residuals; c) and f) sample autocorrelation functions, ACFs, of the
residuals.
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Figure 4: Classification and regression trees (CART) applied to residuals of: a) model (8)
for anoxic volumes in early summer, and b) model (9) for anoxic volumes in late summer.
For each node, average value of the residuals is reported along with the node size expressed
as percentage of the total sample size T = 33.
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Figure 5: Transformations f̂(t) estimated using alternating conditional expectations for the
residuals of: a) model (8) for anoxic volumes in early summer, and b) model (9) for anoxic
volumes in late summer. The labeled vertical lines denote visually identified change points.
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