Ecological Archives E095-046-A1

Roswitha B. Ehnes, Melanie M. Pollierer, Georgia Erdmann, Bernhard Klarner, Bernhard Eitzinger, Christoph Digel, David Ott, Mark Maraun, Stefan Scheu, Ulrich Brose. 2014. Lack of energetic equivalence in forest soil invertebrates. Ecology 95:527–537. http://dx.doi.org/10.1890/13-0620.1

Appendix A. Mass–length regressions used to estimate body mass from the estimated body length of preserved soil organisms.

Length–mass conversions

Table A1. Mass–length regressions used to estimate body masses (dry mass or fresh mass) from the estimated body lengths of preserved soil organisms. All body lengths (L) in mm.

Phylogenetic group

Mass unit

Type of equation

a

b

Original study

 

 

 

 

 

 

Acari (all spp.)

fresh mass [µg]

logM = a+ b * logL

2.1170

2.7110

Mercer 2001

Anyphaenidae

fresh mass [mg]

lnM = a + b * lnL

-2.2470

2.8140

Edwards 1996

Agelinidae

fresh mass [mg]

lnM = a + b * lnL

-2.0310

2.6600

Edwards 1996

Araneidae

fresh mass [mg]

lnM = a + b * lnL

-1.9230

2.9230

Edwards 1996

Beetle larvae

dry mass [mg]

M =a * Lb

0.0035

2.4033

Lang 1997

Chilopoda (<10)

dry mass [mg]

M =a * Lb

0.0020

2.9277

Lang 1997

Chilopoda (>10)

dry mass [mg]

M = a* Lb

-4.0490

2.1800

Gowing 1984

Chrysomelidae

dry mass [mg]

M = a* Lb

-2.4270

2.1710

Sample 1993

Clausilia bidentata

dry mass [mg]

logM = a + b * logL

-1.3000

2.6800

Mason 1970

Clubionidae

fresh mass [mg]

lnM = a + b * lnL

-2.1560

2.6530

Edwards 1996

Coccinelidae

dry mass [mg]

M = a * Lb

-4.9270

3.8670

Sample 1993

Cochliopa lubrica

dry mass [mg]

LogM * 10 = a + b * logL

0.2500

2.1100

Mason 1970

Coleoptera

fresh mass [mg]

logM = a+ b * logL

-4.1929

3.0160

Mercer 2001

Coleoptera larvae

dry mass [mg]

lnM = a + b * lnL

-4.4267

1.3272

McLaughlin 2010

Curculionidae

fresh mass [mg]

logM = a+ b * logL

-4.1783

2.9977

Mercer 2001

Diplopoda

dry mass [mg]

M = a * Lb

-4.5910

2.5430

Gowing 1984

Discus rotundatus

dry mass [mg]

logM = a + b * logL

-0.7900

2.7800

Mason 1970

Elateridae

dry mass [mg]

M =a * Lb

-4.5980

2.9390

Sample 1993

Elateridae (larvae)

fresh mass [mg]

M =a * Lb

0.0095

2.7812

Balushkina 1980

Euconulus fulvus

dry mass [mg]

logM = a+ b * logL

-1.1600

3.3600

Mason 1970

Gastropoda

fresh mass [g]

M = a * Lb

0.0004

2.3800

McKinney 2004

Insects (all spp.)

fresh mass [g]

logM = a+ b * logL

-4.2940

3.1510

Mercer 2001

Isopoda

dry mass [mg]

lnM = a + b * lnL

-5.0710

2.9058

McLaughlin 2010

Linyphiidae

fresh mass [mg]

lnM = a + b * lnL

-1.8290

2.7540

Edwards 1996

Lycosidae

fresh mass [mg]

lnM = a + b * lnL

-2.0430

2.8420

Edwards 1996

Oniscus asellus

dry mass [mg]

lnM = a + b * lnL

-4.5442

2.4412

McLaughlin 2010

Opiliones

dry mass [mg]

M = a * Lb

0.0580

2.5590

Henschel 1996

Opiliones

dry mass [mg]

lnM = a + b * lnL

-3.9475

1.7364

McLaughlin 2010

Oribatei

fresh mass [µg]

L = b * logM + a

2.3860

2.5190

Huhta 1975

Porcellio scaber

dry mass [mg]

lnM = a + b * lnL

-5.4164

3.3024

McLaughlin 2010

Philodromidae

fresh mass [mg]

M =a * Lb

-1.9850

2.9400

Edwards 1996

Salticidae

fresh mass [mg]

M =a * Lb

-2.1840

2.9010

Edwards 1996

Staphylinidae

dry mass [mg]

M = a * Lb

0.0134

2.2600

Lang 1997

Tetragnathidae

fresh mass [mg]

M = a * Lb

-2.6150

2.5740

Edwards 1996

Theridiidae

fresh mass [mg]

lnM = a + b * lnL

-1.5770

2.9070

Edwards 1996

Thomisidae

fresh mass [mg]

lnM = a + b * lnL

-1.6440

2.9730

Edwards 1996

Note that for determining fresh mass of gastropoda including the shell, 15 % of the calculated fresh mass without shell were added to obtain fresh mass with shell (after Gomot 1998).

 

Table A2. Dry-mass fresh-mass conversion equations (dm = dry mass, fm = fresh mass).

Phylogenetic group

Mass

Type of equation

a

b

Original study

 

 

 

 

 

 

spiders various

mg

dm = a * fmb

0.4290

0.8600

Breymeyer 1967

Insects (all spp.)

g

log(fm) = a+ b * log(dm)

0.6111

1.0213

Mercer 2001

Myro spp

g

log(fm) = a+ b * log(dm)

0.7575

1.0731

Mercer 2001


Literature cited

Balushkina, Y. V. 1980. Body weight of Chironomid larvae as a function of length. Hydrobiological Journal, 45–52.

Breymeyer, A. 1967. Correlations between dry weight of spiders and their length and fresh weight. Bulletin de l´Academie Polonaise des Sciences 15:263–265.

Edwards, R. L. 1996. Estimating live spider weight using preserved specimens. Journal of Arachnology 24:161–166.

Gomot, A. 1998. Biochemical composition of Helix snails: influence of genetic and physiological fFactors. J. Mollus. Stud. 64:173–181.

Gowing, G., and H. F. Recher. 1984. Length–weight relationships for invertebrates from forests in south-eastern New South Wales. Australian Journal of Ecology 9:5–8.

Henschel, J. R., D. Mahsberg, and H. Stumpf. 1996. Mass-length relationships of spiders and harvestmen (Araneae and Opiliones). Revue suisse de Zoologie, 265–268.

Huhta, V., and A. Koskenniemi. 1975. Numbers, biomass and community respiration of soil invertebrates in spruce forests at two latitudes in Finland. Annales Zoologici Fennici 12:164–182.

Jarosik, V. 1989. Mass vs. length relationship for carabid beetles (Col., Carabidae). Pedobiologia 33:87–90.

Lang, Krooss, S., and H. Stumpf. 1997. Mass length relationships of epigeal arthropod predators in arable land (araneae, chilopoda, coleoptera). Pedobiologia 41:327–333.

Mason, C. F. 1970. Snail populations, beech litter production, and the role of snails in litter decomposition. Oecologia 5:215–239.

McKinney, R. A., S. M. Glatt, and S. R. Williams. 2004. Allometric length–weight relationships for benthic prey of aquatic wildlife in coastal marine habitats. Wildlife Biology 10:241–249.

McLaughlin, Ó. B., T. Jonsson, and M. C. Emmerson. 2010. Temporal variability in predator–prey relationships of a forest floor food web. Advances in Ecological Research 42:171–264.

Mercer, R. D., A. G. A. Gabriel, J. Barendse, J. J. Marshall, and S. I. Chown. 2001. Invertebrate body sizes from Marion Island. Antarctic Science 13:135–143.

Sabo, J. L., J. L. Bastow, and M. E. Power. 2002. Length–mass relationships for adult aquatic and terrestrial invertebrates in a California watershed. Journal of the North American Benthological Society 21:336–343.

Sample, B. E., R. J. Cooper, R. D. Greer, and R. C. Whitmore. 1993. Estimation of insect biomass by length and width. American Midland Naturalist 129:234–240.


[Back to E095-046]