High resolution studies of hydride transfer in the ferredoxin:NADP⁺ reductase superfamily **Figure S1. Measurements used for the reanalysis of** *Anabaena* **FNR Y303S** and **wild type kinetics.** Reproduction of Figure 3 from [1] showing time courses for the reaction of **(A)** WT FNR_{red} with NADP⁺, **(B)** Y303S FNR_{red} with NADP⁺, **(C)** WT FNR_{ox} with NADPH, and **(D)** Y303S FNR_{ox} with NADPH. Spectra were enlarged by ~345% and the height of each peak at ~460 nm corresponding to the major absorption band of oxidized FAD was measured in cm from the x-axis (-0.025 AU). The measured height is listed next to each spectrum. Before using the peak heights to derive concentrations of FNR_{red} and FNR_{ox} in the Y303S experiments, we corrected for the offset in the Y303S FNR_{red} + NADP⁺ spectra by subtracting from all Y303S FNR_{red} + NADP⁺ (panel B) measurements the difference of 1.85 cm that was seen between the final Y303S FNR spectra peak heights (purple traces in panels B and D). ## References 1. Lans, I., Peregrina, J. R., Medina, M., Garcia-Viloca, M., Gonzalez-Lafont, A. & Lluch, J. M. (2010) Mechanism of the hydride transfer between Anabaena Tyr303Ser FNR(rd)/FNR(ox) and NADP+/H. A combined pre-steady-state kinetic/ensemble-averaged transition-state theory with multidimensional tunneling study, *J Phys Chem B.* **114**, 3368-79.